
Universität des Saarlandes

Naturwissenschaftlich-Technische Fakultät I

Fachrichtung Informatik

Activity Recognition in
Human Robot Collaboration

through Object Detection

Masterthesis

Frank Baustert

18.07.2018

Advisor:
Christian Bürckert

Examiners:
Prof. Dr. rer. nat. Dr. h.c. mult. Wolfgang Wahlster

Dr. Tim Schwartz

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbstständig
verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet

habe.

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in
die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken,
(Datum / Date) (Unterschrift/ Signature)

Abstract

Human activity recognition is a widespread research field which aims to recognize the
actions and intentions of humans. Over the last few years vision-based, deep learning
approaches have become a popular way to tackle this problem by extracting information
from videos, which can be seen as temporal sequences of frames. In a practical activity
recognition scenario, it is important to recognize these activities with a low latency.
Thus, one has to decide whether to spend more computational time on extracting infor-
mation from single frames at the cost of processing them at a lower frequency, or to use
information from more frames, which is possibly less accurate. This thesis investigates
this tradeoff between the spatial and temporal dimension. For this purpose, a guideline
on how this tradeoff can be determined is provided. The steps from this guideline are
elaborated on the new dataset EgoBaxter created for this thesis, using convolutional
neural networks to cover the spatial dimension and recurrent neural networks to cover
the temporal dimension. The results show that focusing on the spatial dimension leads
to better overall results.

v

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Goals . 4
1.3 Outline . 5

2 Background - Artificial Neural Networks 7
2.1 Convolutional Neural Network (CNN) . 7
2.2 Object Detection . 10

2.2.1 Faster Region-CNN (Faster R-CNN) 10
2.2.2 Region-based Fully Convolutional Network (R-FCN) 12
2.2.3 Single Shot MultiBox Detector (SSD) 13
2.2.4 Common Practices in Object Detection 15

2.3 Recurrent Neural Network (RNN) . 17
2.3.1 Long Short-Term Memory (LSTM) 17
2.3.2 Gated Recurrent Unit (GRU) . 19

3 Related Work 21
3.1 Spatio-Temporal Features . 21
3.2 Two-Stream Models . 23
3.3 Pose-based Models . 27
3.4 Hybrid Models . 29
3.5 Unsupervised Learning . 33
3.6 Recap and Runtime Analysis . 36

4 Concept 39
4.1 The Architecture - A Sequential Model 39
4.2 EgoBaxter - A Baxter PoV Dataset . 41
4.3 Training and Evaluating Neural Networks 43
4.4 Sequential Part 1 - The Spatial Component 46

4.4.1 Objects of Interest . 46
4.4.2 Transfer Learning . 46

4.5 Sequential Part 2 - The Temporal Component 49
4.6 Determining the SpatioTemporal Tradeoff 49

5 Implementation 51
5.1 EgoBaxter - A Baxter PoV Dataset . 51

5.1.1 Acquisition . 51
5.1.2 Labeling . 52

5.2 The Spatial Component . 55
5.2.1 Configuring the Detection Models 55

vii

Contents

5.2.2 Training the Models . 58
5.2.3 Evaluating the Models . 59

5.3 The Temporal Component . 60
5.3.1 Building the Recurrent Networks 60
5.3.2 Training the Networks . 63
5.3.3 Evaluating the Networks . 64

6 Evaluation 67
6.1 TensorBoard - A Visualization Tool . 67
6.2 Evaluation of the Spatial Component . 70
6.3 Evaluation of the Temporal Component 77
6.4 The SpatioTemporal Tradeoff . 83

7 Conclusion 85

8 Future Work 87

Bibliography 93

viii

1 Introduction

Many intelligent systems that assist or interact with humans require to understand
human behaviour. One widespread and active research field investigating this topic is
Human Activity Recognition (HAR). HAR is employed in many different applications
such as assisted living [24] [92], video surveillance [96] [46], intelligent driving [8] or
Human Robot Collaboration (HRC) [50].

The research on HAR can be divided into two main categories: vision-based HAR and
sensor-based HAR [95]. Vision-based HAR uses images or videos from a camera as its
main source of input, whereas sensor-based HAR uses motion information from sensors
such as accelerometers or gyroscopes. Both of these categories can further be split into
two types: handcrafted methods and (deep) learning-based methods, the latter having
become more and more popular over the last few years. One of the reasons for this is
the big success of a learning-based approach over handcrafted methods in the ImageNet
Large Scale Visual Recognition Competition (ILSVRC) 2012 [71]. Furthermore, the
advances in hardware, especially GPUs, have made learning-based approaches more
feasible.

This thesis focuses on vision-based, deep learning HAR approaches. In this type of
HAR, activities are usually recognized from videos, which can be seen as sequences of
frames. Videos can encode information in two main dimensions: the spatial dimension,
being the 2-D frames, encodes what is perceived and where it is located, and the tem-
poral dimension, which encodes how these entities change over time. For each of the
two dimensions there is a well suited deep neural network type. The spatial dimension
is best covered by Convolutional Neural Networks (CNNs), whereas Recurrent Neural
Networks (RNNs) are commonly used for the temporal dimension. Over the last few
years, a lot of different CNN architectures have emerged. In general, the networks that
achieve better results are more complex in structure, as they have for example more
layers, which results in higher computational costs. This leads to a tradeoff when com-
bining CNNs with RNNs for activity recognition from videos in practice. One could
either devote more computational time on the spatial dimension by using a more ac-
curate, but slower CNN, thus having less information about temporal changes. Or
one could use a less precise, but faster CNN in order to invest more resources in the
temporal dimension. For example, one CNN could evaluate a single frame with 90%
accuracy, but can only do so at a frame rate of 2 frames per second (fps). Another CNN
could extract spatial information at a frame rate of 10 fps, but can only extract this
information at a precision of 50%. When combining these CNNs with a RNN which
one will achieve the better overall performance? Using a slower, but more precise CNN
(CNN 1 Figure 1.1) or by sacrificing spatial accuracy for more temporal information
(CNN 3)? Maybe it is even a point in between which works best (CNN 2). This thesis
aims to answer these questions, by determining the tradeoff between the spatial and
temporal dimension in a HRC scenario.

1

1.1. Motivation

The HRC scenario considered in this thesis is a Baxter robot which is working together
with a human agent. From time to time, the human worker needs a tool and will request
Baxter to hand it to him. If the tool is no longer needed he will give it back to the
robot. Baxter will be taught to recognize these activities from its own point of view.
Furthermore, in order to not only recognize that the worker is handing the robot a tool,
but to also know where to grab it, object detection will be employed to detect and
localize the tool at the right position.

Figure 1.1: Different CNNs with different accuracies and computational speeds.

1.1 Motivation

Most practical HAR applications need to work in real-time for them to be useful. In
case of a HRC scenario, this is relevant for two major reasons. First, when a robot
and a human work together it is of utmost importance that the human agent is not
endangered by the robot. For example, if a moving robot would recognize its interacting
partner’s intentions with a delay of 10 seconds, it might have caused an accident in the
meantime. Second, in order to ensure a smooth workflow between a human and a robot,
the robot needs to be reactive. If the robot needs a minute to answer to anything the
human agent does then the point of collaboration becomes ineffective.

The term of real-time is a very vague one. Even though real-time describes a latency,
it is often expressed in fps, e.g. a latency of 500ms is expressed by a system processing
one frame at a frame rate of 2 fps. Some refer to real-time as a frame rate of at least 25
fps. Others claim it needs to be at least 30 or even 60 fps to be considered real-time.
In order to have a common foundation, the term of weak real-time will be introduced
here. An algorithm is considered to work in weak real-time if it works with a frame rate
of at least 1 fps.

This restricition on the computational time limits the resources one can spend, and
thus one needs to decide whether to invest more into the spatial dimension or the
temporal dimension. This tradeoff between the two dimensions, hereafter referred to

2

1.1. Motivation

as SpatioTemporal Tradeoff, is essential to know in order to achieve the best possible
accuracy when recognizing activities.

The motivation for using object detection in the convolutional neural networks is two-
fold. First, in order to be used in practice, it does not suffice for Baxter to recognize
what is happening, the robot also needs to act according to the current activity. In
case of a handover, it needs to know where to place or take the tool from. Second, the
idea of not only knowing what is being perceived on a frame, but also knowing where
it is located might potentially lead to an increase in performance in recognizing human
activities.

3

1.2. Goals

1.2 Goals

Determining the SpatioTemporal Tradeoff

The main goal of this thesis is to determine the SpatioTemporal Tradeoff. When
combining a CNN and a RNN for a weak real-time application, on which of both
components should one focus more? Using higher temporal resolution at the cost of
less accurate spatial information or vice versa? This thesis provides a guideline on how
the SpatioTemporal Tradeoff can be determined, such that it can be reconstructed
for any other dataset. Results are then provided for the newly introduced dataset
EgoBaxter.

Other contributions of this thesis include:

• The novel dataset EgoBaxter
To determine the SpatioTemporal Tradeoff a HAR dataset is needed. For this
purpose the dataset EgoBaxter is created during the process of this thesis. This
dataset contains scenes of a handover between a human agent and a Baxter robot
from the robot’s point of view.

• A practical HAR application for a HRC scenario
As a side result of determining the tradeoff, a practical HAR application for the
EgoBaxter dataset is designed. This application fulfills two important conditions
in order to be considered practical: 1) it works in weak real-time, and 2) it works
on ongoing sequences. The second condition is implicitly given by working in
weak real-time, however, one issue with many approaches in the literature, which
makes them unviable in practice, is that they use after the fact recognition. That
is, they first record the complete video sequence before classifying it. There they
also make use of information from e.g. frame t+10 at frame t which results in a
look ahead of information which is a priori unknown.

4

1.3. Outline

1.3 Outline

The outline of this thesis is as follows: Chapter 2 provides background information about
the deep learning methods employed in this thesis. This includes convolutional neural
networks, different object detection algorithms as well as recurrent neural networks.
Chapter 3 gives an overview of existing works in the field of vision-based, deep learning
HAR. Chapter 4 describes the deep learning architecture on which the SpatioTemporal
Tradeoff is determined. It provides the reasons behind the architecturial choice and a
comparison to the architectures presented in Chapter 3. Furthermore, the EgoBaxter
dataset and a guideline on how to determine the SpatioTemporal Tradeoff are presented.
Chapter 5 covers the implementational details from Chapter 4 and Chapter 6 presents
the evaluations. Finally, the conclusion and ideas about future work are provided in
Chapter 7 and Chapter 8.

5

2 Background - Artificial Neural
Networks

Before diving into the related work and the thesis itself, it is necessary to understand
certain concepts about neural networks, their structure, how they work, and what their
strengths and limitations are. These points will be covered in this chapter.

Artificial neural networks (ANN) are inspired by the human nervous system. The
main building block of the system consists of neurons which are connected to each other
via synapses. A neural network is then formed by a group of interconnected neurons.
One way such a network learns is by altering the strengths of connections between
neurons, and by adding, respectively deleting such connections [59] [33]. Similar to the
neural networks present in the nervous system, an ANN consists of an interconnected
group of artificial neurons, also referred to as nodes. The connections between the
nodes can be seen as the counterpart to the synapses, each having a weight assigned to
it which can be adjusted during training.

Artificial neural networks are used for many different tasks and over the years a broad
variety of networks has emerged. One particular characteristic of ANNs is that they
learn from examples without being told any rules. Hereafter, the two main variants
of networks appearing in this thesis will be presented, namely convolutional neural
networks and recurrent neural networks.

2.1 Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs) [25] [49], also often referred to as convnets, are
a type of feedforward neural networks and are commonly used in the visual domain. In
feedforward networks the artificial neurons are grouped into layers. Information is then
processed in a forward direction, from the first layer to the last layer, making the output
from one layer the input to the next layer. The networks consist of one input and one
ouput layer and one or more hidden layers. Neural networks are typically considered
deep if they have more than one hidden layer. Consequently, the name deep learning
comes from employing deep networks. An example is shown in Figure 2.1.

Even though CNNs have been around for quite a few years, they had to wait until
2012 to make their breakthrough. In the ImageNet Large Scale Visual Recognition
Competition (ILSVRC) 2012 [71], Krizhevsky et al. [47] beat their competitors by more
than 10%. They used a CNN whereas the other contestants relied on handcrafted
features. Since then CNNs have become the primary method for image classification
and related problems.

Generally, in a regular feedforward neural network, a neuron is connected to all the
neurons in the previous layer. In case of an image as input, a neuron in the first hidden
layer would be connected to all the pixels of each color channel. This would lead to

7

2.1. Convolutional Neural Network (CNN)

Figure 2.1: Simple example of a feedforward neural network with two hidden layers. It
can be seen as a directed graph with no cycles.

3 ∗ hw weights for an h x w RGB image for a single neuron in the first hidden layer.
For smaller images this is still feasible, but as the images become larger, the number
of parameters explodes. CNNs overcome this problem by using weight sharing in the
convolutional layers.

Convolutional Layer

As the name might suggest, convolutional layers are the main building block of convo-
lutional networks. Instead of thinking of the convolutional layer as a set of neurons, it
is easier to see them as a set of filters. Their role is to learn to detect visual features,
which could be edges or corners in the early layers or more complex shapes in the later
layers. These filters operate on an input volume. In case of the first convolutional layer,
the input volume would be an image, where the depth is the number of color channels.
A filter is connected to only a small spatial region, known as the receptive field, but uses
the whole depth of its input. The filter is then slid over the whole volume, producing
one output value at each position and thus a 2-D set of values, often referred to as
feature map. As usually multiple filters are applied, the output of a convolutional layer
is a 3-D volume as can be seen in Figure 2.2, where the depth is the number of filters.

Figure 2.2: Computation of feature maps by a convolutional layer. Image from1.

1https://brilliant.org/wiki/convolutional-neural-network/ (last accessed on 16.06.2018)

8

https://brilliant.org/wiki/convolutional-neural-network/

2.1. Convolutional Neural Network (CNN)

In regular feedforward networks, each value in a 2-D feature map would require one
neuron. For a m x n map this would result in mn ∗ filtersize weights. However, in
CNNs, the same filter is used to calculate one feature map. In this way, the parameters
are shared and only the weights of the filter are needed. Using the same filter at
different spatial locations also allows for translation invariance, meaning a feature will
be detected regardless of its position in an image. The convolutional layer has a few
adjustable hyperparameters which are the number of filters, the size of the receptive
field, its stride and its padding.

On top of these feature maps an element-wise non-linear function, often called activa-
tion function, is applied. In CNNS this is typically the Rectified Linear Unit (ReLU) [29]
which is defined as f(x) = max(0, x). Without the non-linearity, neural networks could
only calculate linear functions and there would be no purpose in stacking multiple layers.

Pooling Layer

The second important type of layer in CNNs is the pooling layer. It is peridocially
inserted between two convolutional layers. The pooling layer is applied to each feature
map and its function is to reduce the spatial dimensionality, thus reducing the number
of parameters. This also indirectly increases the size of the receptive field in the next
convolutional layer. Furthermore, it adds non-linearity and stabilizes against noise.
The most common pooling method is max pooling with a non-overlapping 2x2 filter
size. An example can be seen in Figure 2.3. The hyperparameters of this layer are the
size and the stride of the pooling window. CNNs without pooling layers have also been
proposed [82].

Figure 2.3: Example of non-overlapping max pooling with filter size 2x2. Graphic by
Andrej Karpathy2

Fully-Connected Layer

Lastly, after multiple convolutional and pooling layers, one or more fully-connected
layers are added. As in regular feedforward networks, neurons in a fully-connected layer
take input from all the activations of the previous layer. For a classification problem
the softmax function is typically applied in the output layer. This function outputs a
probability distribution among the different classes to classify.

2http://cs231n.github.io/convolutional-networks/ (last accessed on 17.06.2018)

9

http://cs231n.github.io/convolutional-networks/

2.2. Object Detection

In the fully-connected layer only the number of neurons is an adjustable parameter.
In addition to all the hyperparameters, the number and ordering of the layers is another
architectural choice which can be modified.

Learning

Image classification is a supervised learning problem where each image has a class label,
also called ground truth, assigned to it. During the training, the inputs are first propa-
gated through the network producing an output value. This value is then compared to
the ground truth of the input, and a loss, indicating how close the prediction is to the
ground truth, is calculated. Using backpropagation [70], this loss is then propagated
backwards through the network and the weights are updated, usually by employing a
form of gradient descent.

Applications

Over the last few years, convolutional neural networks have become the predominant
method for visual recognition. They are used in many domains including image classifi-
cation [47], image segmentation [45] [4] and video classification [44]. Another application
is object detection which will be used in this thesis and is covered in the next section.

2.2 Object Detection

One application field of CNNs is object detection. In addition to classification, object
detection also deals with localizing, possibly multiple, instances of objects in an image.
This section gives a brief introduction to the object detection algorithms employed in
this thesis.

2.2.1 Faster Region-CNN (Faster R-CNN)

Faster R-CNN [68] is the last part of the Region-CNN (R-CNN) trilogy, its predecessors
being R-CNN [28] and Fast R-CNN [27]. It is easier to understand how Faster R-CNN
works, when understanding how its ancestors work. Thus, starting in chronological
order:

R-CNN

R-CNN [28] is based on three steps:

1. Extract region proposals where possible objects of interest could be located using
Selective Search [90].

2. Compute features for each region using a CNN.

3. Classify each region by inputting the extracted features to class-specific Support
Vector Machines (SVMs) [14].

10

2.2. Object Detection

One of the main problems of this approach is that it is very slow during testing time.
The reason behind this is that for each proposed region, there is an entire forward pass
through the CNN. This issue was tackled in the next work.

Fast R-CNN

The basic architecture behind Fast R-CNN [27] is the same as its predecessor’s. First
regions are proposed using Selective Search, then these regions are classified. However,
there are two major changes which improve this model:

1. In a first step, the whole image is processed by the CNN, producing a feature
map. Then, for each Region of Interest (RoI) the corresponding part is extracted
from the feature map using a RoI pooling layer. This shares the computation of
the CNN pass for all region proposals, instead of doing a seperate pass for each
of them.

2. The second change is that the SVMs are replaced with fully-connected layers,
allowing end-to-end training, contrary to the previous multi-step training (first
training/fine-tuning the CNN, then training the classifiers). In the end, the output
of these layers are a class and a bounding box for each region proposal.

Now the aquisition of the region proposals became the computational bottleneck of
the whole process. This part was improved with the third work.

Faster R-CNN

The authors added a so called Region Proposal Network (RPN) to their approach to
create region proposals instead of using Selective Search. As in Fast R-CNN, the whole
image is processed by the CNN creating a feature map. The RPN makes use of these
features as follows: first a small sliding window (3x3) is run over the feature map. At
each location of the sliding window, several region proposals are made by so called
anchors. These anchors are centered at the sliding window and have different scales
and aspect ratios. For each of these anchors the likelihood whether it contains an object
and its box coordinates are being output. Once the region proposals are obtained, the
rest is basically as in Fast R-CNN.

How much the runtime improved with each new model can be found in Table 2.1. A
graphical overview of the three methods can be found in Figure 2.4.

Test Time per Image
R-CNN 50s
Fast R-CNN 2s
Faster R-CNN 0.2s

Table 2.1: Comparison of the different R-CNN models. The underlying CNN is the
VGG16 network [79]. The results were produced using a Nvidia K40 GPU.

11

2.2. Object Detection

(a) R-CNN (b) Fast R-CNN (c) Faster R-CNN

Figure 2.4: Comparison of the R-CNN architectures. Credits to Ross Girshick for the
diagrams.

2.2.2 Region-based Fully Convolutional Network (R-FCN)

Region-based Fully Convolutional Network (R-FCN) [15] is based on the Faster R-CNN
architecture. The authors also employ the two-step architecture of first calculating
region proposals and then classifying them. Just like from R-CNN to Fast R-CNN,
where the runtime was improved by sharing computation, R-FCN aims to achieve the
same by sharing even more computation. Specifically, they want to reduce the work
needed for each RoI.

The authors employ Fully Convolutional Networks (FCN) [55], namely ResNet-101 [32].
Just like in Faster R-CNN, they first compute a feature map by running the whole image
through the CNN. On this feature map they add one more convolutional layer which
produces k2(C + 1) position-sensitive score maps, where k2 represents a k x k grid of
relative positions. In their work, they set k = 3 leading to the relative positions top-left,
top-center, . . . , bottom-center, bottom-right. For each of the relative positions one score
map for each class, and one for the background (no-class object) are produced, leading
to C +1 maps per position. The RoIs are calculated the same way as in Faster R-CNN,
using an RPN. Each RoI is then divided into the same k2 subregions as the produced
score maps. Each of these RoI subregions is then pooled with its respective score map
to check if it matches the corresponding relative position of an object. ”Does the top-left
part of the RoI look like the top-left part of the object? Does the top-center part of the
RoI look like the top-center part of the object?” and so on. The k2 position-sensitive
scores are then averaged, producing a single output value per RoI and class. Thus, for
each RoI a C + 1 dimensional vector is output and the final class decision is obtained
using the softmax function. An overview can be found in Figure 2.5.

Taking the example of a face-detector: a face can be split into different parts like
the eyes, the nose, the mouth, These parts are usually positioned relative to each
other; the eyes can be found in the top-left and top-right subregions of the face, the nose
in the center and the mouth in the bottom-center. Thus, the top-left score map would
look for the right eye, the top-right score map for the left eye and so on. If enough of
these subregions match, then the total score for this class would be very high. Hence, if
the eyes, nose and mouth are detected in their corresponding positions, then that RoI

12

2.2. Object Detection

Figure 2.5: R-FCN architecture.

will most likely be classified as a face. A visualization using the example of a baby can
be found in Figure 2.6.

A speed comparison between Faster-RCNN and R-FCN can be found in Table 2.2.
The number of shared layers in each step is also included.

Faster R-CNN R-FCN
#shared layers in the conv subnet 91 101
#shared layers in the RoI-wise subnet 10 0
Test Time per Image 0.42s 0.17s

Table 2.2: Comparison between Faster R-CNN and R-FCN using ResNet-101 [32]. The
timings are evaluated on a single Nvidia K40 GPU.

2.2.3 Single Shot MultiBox Detector (SSD)

Contrary to the two previous object detection methods, Single Shot MultiBox Detector
(SSD) [54] is not a two-step model. Faster R-CNN and R-FCN are both first proposing
RoIs and then classifying them. SSD on the other hand omits the region proposal
step and does everything in a ”single shot”, hence the name. Instead of using region
proposals, they use a set of pre-defined default bounding boxes on which they apply
small filters to predict a class score and box offsets.

Similar to Faster R-CNN and R-FCN, they start by processing the input image
through a CNN, in this case VGG16 [79]. They modify the base network by replacing
the last few fully-connected layers with convolutional ones. Using these layers, they
produce several feature maps of decreasing size (e.g. 10x10 then 5x5 then 3x3 and so
on), allowing for detections at multiple scales. For each feature map, they iterate over
all the positions, similar to how a convolutional filter is convolved over an image. Each
position has a set of default bounding boxes with different aspect ratios assigned to
it, similar to the anchors in Faster R-CNN. For each of these boxes the offset to the
object and the per-class score are predicted using small 3x3 kernels. Thus, given a m

13

2.2. Object Detection

(a) Visualization of a positive RoI overlap.

(b) Visualization of a negative RoI overlap.

Figure 2.6: Visualization of the R-FCN algorithm. Top: enough of the subregions are
matching for the proposed RoI and it is classified as a baby. Bottom: The
RoI does not accurately overlap with the baby and is thus not classified as
such.

14

2.2. Object Detection

x n feature map, k default bounding boxes and c classes, there are (c + 4)kmn outputs
for that map (4 as a bounding box consists of 4 parameters: x, y, width, height). In
the end, SSD is not that different from the other methods. It simply skips the step
of creating region proposals and instead considers all default bounding boxes at each
location at different scales and aspect ratios.

An example can be seen in Figure 2.7. Although the authors use this figure to describe
the training process in their original work, it can be used to demonstrate the idea of
how the SSD detection works as well. Subfigure (c) shows a 4x4 feature map, each
cell represents one position. The dotted lines represent the default bounding boxes of
different aspect ratios, in this case 3. These are used in each cell, but for the sake of
visibility only shown for one. The parameters at the bottom represent the output for
that box: loc : ∆(cx, cy, w, h) are the box offset and conf : (c1, c2, ..., cp) the per-class
score, given p classes. This box would correspond to the boundig box of the dog in
subfigure (a). Similarly, one of the blue boxes from subfigure (b) would match the cat
in subfigure (a). This example also displays the usage of different feature map scales: in
larger feature maps each cell covers a smaller region, allowing to detect smaller objects.

Figure 2.7: The SSD framework.

A comparison to Faster R-CNN can be found in Table 2.3. Unfortunately, there was
no direct comparison between R-FCN and SSD. However, given the common comparison
to Faster R-CNN, one can deduce that SSD is also faster than R-FCN, as R-FCN is
around 2.5 times faster than Faster R-CNN and SSD is ∼3-8 times faster depending
on the resolution of the input image. SSD does not only outperform its competitor in
speed, but also in accuracy. One can also see that the higher the input resolution, the
larger the feature maps. This implies better detection for smaller objects, but also the
usage of more bounding boxes which slows down the speed of the model.

2.2.4 Common Practices in Object Detection

This subsection covers some more insight which is shared among the different object
detection methods.

The first is how training data is handled. Even though the methods do not train in
the exact same way, they share common concepts. The training data consists of images
which are labeled with bounding boxes. These boxes represent the ground truth of an
object, meaning its class and location. During training, the object detection algorithms

15

2.2. Object Detection

mAP* fps #boxes input resolution
Faster R-CNN 73.2 7 ∼6000 ∼1000x600
SSD300 74.3 59 8732 300x300
SSD512 76.8 22 24564 512x512
* mAP = mean Average Precision, the higher the better

Table 2.3: Comparison of SSD and Faster R-CNN on Pascal VOC 2007 test [19]. The
base network is VGG16 and the experiments were conducted on a Nvidia
Titan X. Note: the results for SSD here use a batch size of 8, whereas the
batch size for Faster R-CNN is 1.

produce several boxes per image, e.g. using an RPN (Faster R-CNN, R-FCN) or by
using default bounding boxes (SSD). Boxes with a certain overlap with the ground truth
are considered positive examples. The overlap is typically measured by Intersection over
Union (IoU), i.e. the ratio between the overlapping area (intersection) and the total
area (union) of the box and the ground truth. If this ratio is above a certain threshold,
e.g. 0.5, the box is considered a positive example, else it is treated as a negative one. As
most of the boxes fall into the latter category, there is a high imbalance between positive
and negative training examples. Hard negative mining [23] is a way of countering this
imbalance: only the negative examples producing the highest loss are used.

After classifying an image and outputting several bounding boxes, it is possible that
multiple detections are covering the same object of interest. To overcome this problem
and to ensure that only one detection is output for an object non-maximum suppression
is used. The general idea is to only use the bounding box with the highest score
from such a cluster of boxes and discarding respectively suppressing the other ones.
A visualization can be found in Figure 2.8. Note that the non-maximum suppression
method used in the object detection algorithms differs from the one the authors of [37]
employ in the visual example, however the key idea is the same.

Figure 2.8: Example of non-maximum suppression using a convnet [37].

16

2.3. Recurrent Neural Network (RNN)

2.3 Recurrent Neural Network (RNN)

Traditional feedforward networks treat each input as an isolated instance. They have
no ”memories” of the past. Recurrent Neural Networks (RNNs) [36] overcome this
shortcoming by managing a hidden state which depends on previous inputs, enabling
them to work with sequences of inputs.

More formally, at time t the hidden state ht is calculated as follows:

ht = f(Whht−1 + Wxxt) (2.1)

where ht−1 is the previous hidden state, xt is the input at time t and Wh and Wx are
the weights. On top of that is a non-linear activation function f which is typically the
hyperbolic tangent function tanh(x) or the sigmoid function sig(x) = 1/1 + e−1. The
output yt is then calculated with respect to the hidden state ht:

yt = f(Wyht) (2.2)

A visualization can be seen in Figure 2.9.

Figure 2.9: Visualization of a RNN.

In practice however, this type of RNN has problems with learning long-term depen-
dencies when using gradient-based learning methods as was shown by Bengio et al. [7].
The problem when propagating the error backwards through many time steps is that the
gradient either vanishes or explodes. These are known as the vanishing and exploding
gradient problems.

2.3.1 Long Short-Term Memory (LSTM)

To overcome the aforementioned problems of vanishing and exploding gradients Hochre-
iter and Schmidhuber introduced Long Short-Term Memory (LSTM) networks [35].
Unlike standard RNNs, LSTMs have a memory cell, or cell state. Furthermore, several
so called gates manage the information flow.

17

2.3. Recurrent Neural Network (RNN)

The first gate is the forget gate3, which decides what information to forget from the
cell state:

ft = sig(Wfhht−1 + Wfxxt) (2.3)

where ht−1 is the hidden state from the previous time step, xt is the current input and
Wfh respectively Wfx are weights.

The counterpart to the forget gate is the input gate which decides which information
will be added to the cell state:

it = sig(Wihht−1 + Wixxt) (2.4)

New memory content is then proposed by:

c̃t = tanh(Wchht−1 + Wcxxt) (2.5)

And finally, cell state ct is updated by forgetting parts of the previous cell state and
adding parts of the newly proposed memory content:

ct = ftct−1 + itc̃t (2.6)

Last but not least, the hidden state ht is calculated with the help of the output gate
and the updated cell state:

ot = sig(Wohht−1 + Woxxt) (2.7)

ht = ottanh(ct) (2.8)

A visualization of the whole information flow, the cell state and the different gates can
be found in Figure 2.10.

Figure 2.10: Visualization of an LSTM and its different gates. Graphic from 4

3The forget gate was not present in the original work by Hochreiter and Schmidhuber [35], but was
only later introduced by Gers et al. [26]

4http://colah.github.io/posts/2015-08-Understanding-LSTMs/ (last accessed on 20.06.2018)

18

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

2.3. Recurrent Neural Network (RNN)

2.3.2 Gated Recurrent Unit (GRU)

Similar to the LSTM the Gated Recurrent Unit (GRU) introduced by Cho et al. [11]
makes use of gates. The hidden state ht and the cell state ct are merged into a single
state ht. Furthermore, instead of using three gates GRUs only use two, the update gate
z and the reset gate r :

zt = sig(Wzhht−1 + Wzxxt) (2.9)

rt = sig(Wrhht−1 + Wrxxt) (2.10)

The reset gate can be seen as a counterpart to the forget gate and the update gate as
one to the input gate. There is no output gate in a GRU. New candidate state values
are computed by:

h̃t = tanh(Whxxt + Whh(rtht−1)) (2.11)

And the state is finally updated by:

ht = (1− zt)ht−1 + zth̃t (2.12)

A visualization of the whole information flow can be found in Figure 2.11.

Figure 2.11: Visualization of a GRU. Graphic from 5

In the work by Chung et al. [13], they concluded that both LSTM and GRU out-
perform traditional RNNs. However, when comparing the performance of LSTMs and
GRUs they could not make a clear conclusion which one is better. In practice, GRUs
are computationally more efficient as they have less parameters than the LSTMs.

Applications

RNNs are being used in various tasks where something can be modeled as a sequence.
These sequences do not necessarily have to be temporal, e.g. a sentence can be regarded
as a sequence of words. Furthermore, these sequences do not have to be in the input
but can also be in the output. Examples include: 1) image captioning [43], where the
input is a single image and the output is a sentence describing the image. 2) video
classification [61], where the input is a sequence of frames and the output is a single
class. 3) language translation [85], where both the input and output are sequences.

5http://colah.github.io/posts/2015-08-Understanding-LSTMs/ (last accessed on 20.06.2018)

19

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

3 Related Work

As introduced in the first chapter, there are several approaches on how to recognize
human activities. In this section, only vision-based, deep learning related work will
be presented, as those are closest to the approach of this thesis. Moreover, as deep
learning approaches became more and more popular over the last few years, lots of
different methods have emerged. This section only covers the most common/important
architectures along with some expansions of them.

3.1 Spatio-Temporal Features

A video can be regarded as a temporal sequence of images. For classifying human ac-
tivities from videos it is thus an obvious choice to cover both dimensions, spatial and
temporal, as both of them contain relevant information about what action a person is
performing. The approaches presented in this section aim to extract spatio-temporal
features from subsequences of the whole video. As the name suggests, these features
contain information about both the spatial dimension and the temporal dimension si-
multaneously.

3D Convolutional Neural Networks for Human Action Recognition
(2010)

This work by Ji et al. [42], being published in 2010, already emerged before the break-
through of neural networks for image recognition tasks in 2012, making it one of the
pioneer works of using neural networks for human activity recognition.

CNNs are deep networks that can extract features from raw, two-dimensional data,
namely from raw images. This covers only the spatial dimension, however, for action
recognition from videos it is also important to cover the temporal dimension. Thus,
the authors of this paper developed a 3D CNN model, extending the old model by one
more dimension, which will extract both spatial and temporal features.

The network structure can be seen in Figure 3.1. The input to the network is a block
of 7 frames of size 60x40 consisting of the current frame, 3 preceding frames and 3
following frames. Before applying any convolutional layers to this input volume, they
apply a set of hardwired kernels (H1). This step can be seen as a preprocessing step
where information about the grayvalues, the horizontal and vertical gradients in each
frame, and the horizontal and vertical optical flow of two consecutive frames is extracted
from the 7 input frames. Afterwards a 3D filter of size 7x7x3 (7x7 in spatial and 3 in
temporal dimension) is applied to each of the 5 categories listed above. Surprisingly,
they only used two different filters for each category (indicated by the 23*2 in layer C2).
This layer is followed by a subsampling layer (S3), which can be seen as a pooling layer,
and the process is repeated with 3 different convolutional filters for each category (C4)

21

3.1. Spatio-Temporal Features

and a larger sampling rate (S5). The last convolutional layer (C6) is only performed in
the spatial dimension as the temporal dimension already became relatively small, which
is then followed by a fully-connected layer to determine the output.

Figure 3.1: The complete 3D CNN structure. In the first layer (H1) the 7 input frames
are preprocessed before the actual convolutions (C2, C4, C6) take place.

They evaluated their method on the TRECVID 2008 [80] and the KTH [73] dataset.
On the TRECVID 2008 dataset, they compared their 3D CNN to a 2D CNN and two
other baseline models; their model outperformed all the other models, hinting that
the additional motion information indeed helps to classify an action. On the KTH
dataset, they performed slightly worse (difference of 1.5%) than the handcrafted-based
HMAX [75] [41] method.

Sequential Deep Learning for Human Action Recognition (2011)

Similar to Ji et al. [42], this work already emerged before the breakthrough of neural
networks in image recognition. Baccouche et al. [3] use a two-step model where they
combine a 3D CNN with a LSTM.

The goal of adding a LSTM sequentially to the 3D CNN is to be able to cover longer
sequences. The 3D CNN takes as input a limited, usually small, amount of frames and
can only classify actions which happen within this short sequence of frames. Thus, they
can only cover a short motion while neglecting its evolution over time, as each block of
frames is treated independently. The authors have shown in another work [2] that such
information is beneficial to distinguish between actions. Therefore, they add a LSTM
to their model which will cover the temporal changes of the whole video.

The first step of their two-step model consists of a 3D CNN similar to the one in the
previously presented work. While the concept is the same, the structure is different.
Instead of taking 7 60x40 frames as input, they take 9 34x54 frames. Also, they omit
the preprocessing step of extracting information about gradients and optical flow. They
are applying 3 3D convolutional layers creating 7/35/5 feature maps each. Between
two convolutional layers, they inserted rectification (which simply returns the absolute
value of its input) and sub-sampling layers. The 3D CNN is then trained on the KTH
dataset [73] before the second step comes into place.

As already mentioned earlier, the second step of the two-step model consists of a
LSTM. At each time step, this network takes as input the output of the third (which

22

3.2. Two-Stream Models

is the last) convolutional layer of the 3D CNN. The structure of the LSTM itself is
relatively simple, consisting of only one hidden layer with 50 nodes. The output is then
a decision on the entire video sequence. The full model can be found in Figure 3.2.

Figure 3.2: The two-step sequential architecture. A volume of 9 frames is input to the
3D CNN, where spatio-temporal features are extracted. These features are
then input to the LSTM, which will classify the sequence.

They evaluated their model on the KTH dataset, which they further split into two:
KTH1, is the original dataset and contains sequences where the same action is performed
3 to 4 times. For KTH2, they split these sequences into smaller ones, containing only
one action per sequence. Furthermore, they did not only test their method against
state-of-the-art approaches, but also against a baseline model of their approach which
does not use an LSTM. Their results are as follows:

• Adding the LSTM increases the performance by around 3%, which is quite
a lot considering that the overall performance is already at around 90%.

• The two-step model performs better on KTH1, which confirms the hypothesis
that LSTM are better suited for longer sequences.

• Their model outperforms all other deep models on both KTH1 and KTH2 and
achieves results close to the best state-of-the-art models.

3.2 Two-Stream Models

The approaches in this section differentiate from the ones in the previous section in
the way they treat the spatial and temporal information. In the previous section, they
extracted spatio-temporal features and handled them as a single unit. The approaches in
this section separate the spatial and temporal information, i.e., treat them individually,
and then make use of both of these channels to make a decision on a video sequence.

Two-Stream Convolutional Networks for Action Recognition in
Videos (2014)

The architecture of this work by Simonyan and Zisserman [78] is based on the two-
streams hypothesis which states that humans possess two distinct visual systems: the
ventral stream (”what” stream) which is responsible for object identification, and the

23

3.2. Two-Stream Models

dorsal stream (”where”stream) which recognizes motion [30]. They model these streams
with two CNNs. The ventral stream is covered by what they call Spatial stream Con-
vNet and the dorsal stream is covered by the Temporal stream ConvNet.

For both networks they use the same architecture, the CNN-M-2048 from [10], which
can be found in Figure 3.3. The networks consist of 5 convolutional layers and 3 fully-
connected layers (full6, full7 and softmax). The activation function they use is the
rectifier function (ReLU) and they apply 2x2 max pooling. The only difference between
the two networks is that the Temporal ConvNet does not have a second normalisation
layer.

Figure 3.3: The Two-Stream Architecture: the Spatial ConvNet (top) extracts spatial
information from a single frame, the Temporal ConvNet (bottom) extracts
motion information from several frames of optical flow. Both channels are
then combined to make a decision on which action takes place in a sequence.

They evaluated their model on the UCF-101 [81] and the HMDB-51 [48] datasets.
However, before comparing their model to other state-of-the-art approaches, they first
tested different configurations for their two-stream model and its components. Start-
ing with the Spatial stream ConvNet, its role is to extract information from a single
frame. As the architecture is already fixed, the only configurations they tested for this
component were different training settings. They considered three setups, 1) training
the network from scratch on the UCF-101 dataset, 2) pre-training the network on the
ImageNet 2012 dataset [71] and then fine-tune it on UCF-101, 3) again pre-training the
network on the ImageNet 2012 dataset and only retrain the last layer on UCF-101. The
conclusions for this component were as follows:

• Pre-trained networks performed better than training from scratch.

• There is no big difference between fine-tuning several layers or only the last
layer.

The Temporal stream ConvNet component is a bit more complex than the spatial one,
giving room for more different configurations. The input to this network consists of the
optical flow of several consecutive frames. The optical flow of two consecutive frames
can be seen as a set of vectors which define the displacement which takes place in these
two frames. For the input these vectors are further divided into their horizontal and

24

3.2. Two-Stream Models

vertical component. Two main variations of the optical flow are considered 1) optical
flow stacking, where the displacement vector is extracted at the same location each
time, 2) trajectory stacking, where the displacement vector follows along the trajectory,
thus not necessarily being at the same location every time. Furthermore, optical flow
can be bi-directional, i.e. not only considering frames following the current one, but also
the ones preceding it. Last but not least, they subtract the average displacement vector
from each optical flow map to compensate for global motion such as camera movement.
Their observations for the Temporal ConvNet are as follows:

• Considering the optical flow of multiple consecutive frames leads to better
results as more motion is covered.

• Subtracting the mean displacement vector leads to better results as it com-
pensates for global motion.

• Optical flow stacking performs slightly better than trajectory stacking, even
though the difference is marginal.

• Bi-directional optical flow performs slightly better than only using forward-
directional optical flow.

• The Temporal ConvNet performs better on its own than the Spatial ConvNet,
leading to the conclusion that motion information might be more important
than spatial information when it comes to action classification.

To combine the information of both components, they fused the output of the net-
works by either averaging them or using a linear SVM. Combining both spatial and
temporal information leads to better results than when treated individually. Of the two
fusion methods, SVM achieved the better results.

When compared to state-of-the-art approaches the two-stream model outperforms
them on the UCF-101 dataset (even though it is only by 0.1%). On the HMDB-51
dataset it is outperformed by two other approaches.

Going Deeper into First-Person Activity Recognition (2016)

While the architecture and idea of Ma et al. [57] are similar to the ones described by
Simonyan and Zisserman in the previous one, there are some fundamental differences
and findings making this approach noteworthy.

Similar to the Spatial and Temporal network, they use two CNNs in parallel; one
being responsible to detect objects of interest, the so called ObjectNet, and one being
responsible to capture motion, the so called ActionNet. Both networks are depicted in
Figure 3.4. As has been shown in [31] and [52], and also concluded by Simonyan and
Zisserman [78], using both of these information sources together will lead to the best
results, thus in this work they also combine the output of both networks to classify an
activity. One important point to notice is that, contrarily to the works presented so far,
they classify activities from first-person videos, more precisely, activities performed by
the observer (i.e. the person wearing the camera).

ObjectNet is responsible to determine the object of interest in the activity taking
place. Simply detecting all objects in an image is for one thing difficult to achieve,

25

3.2. Two-Stream Models

Figure 3.4: Top part: ObjectNet determines the object of interest using the appear-
ance of the user’s hand as a clue. Bottom part: ActionNet determines
which action is taking place using motion information. Information of both
networks combined leads to the classification of the activity taking place in
the video sequence.

given that high accuracy is desired and for another thing one would need to determine
the object of interest out of all the detected objects. The observation that the object
of interest most often appears close to the hands lead to the idea of using the hand
appearance as a clue to determining the desired object. For this purpose, they first train
a hand segmentation network [56]. Afterwards, using the same network architecture as
for the segmentation network, they train a localization network which will give them
a probability map of where the object of interest occurs. Using said map, they crop a
fixed-sized image of where they believe the object of interest is located and feed it to
the actual object recognition network, which is the same model they used in the Spatial
ConvNet [10]. Lastly, they take the object class scores from every frame in the action
sequence and output the object with the highest mean value as the object of interest.

ActionNet follows the same idea as the Temporal ConvNet. They use forward-
directional optical flow of multiple frames as their motion information to determine
which action takes place in a frame. They then again average the scores of the classes
over the whole sequence and output the one with highest value.

In a last step the information of both networks is fused to determine the activtiy
from a video sequence. It is important to not just blindly combine the outputs of both
networks, but to keep in mind the co-relation between the object of interest and the
performed action. For example if the object of interest is a milk container then the
probability of the action being cut or crack should be very low. Thus, the authors
fuse both networks together by connecting their second last fully-connected layers and
adding another fully-connected layer on top of it. When training the joint model, they
do not only train this new fully-connected layer but also ObjectNet and ActionNet
altogether.

26

3.3. Pose-based Models

They evaluated their model on the GTEA [21], GTEA gaze [22] and GTEA gaze+ [22]
datasets. They evaluated ObjectNet and ActionNet individually, before reporting re-
sults of the combined model. Some of the most noteworthy findings are the following:

• Hands are important for object recognition. Even though the role of the
ObjectNet is to determine the object of interest, the images input to the network
contain big portions of hands on them. The network learned features of the
appearance of the hand, e.g. how the hand is positioned, to help classifying the
actual object.

• Camera motion compensation is important for action recognition. Sim-
ilar observation to subtracting the mean displacement vector to compensate for
global motion in the previous work.

• Temporal motion patterns are important for action recognition. That
is, the temporal flow of an action is important, e.g. the actions give and take are
only different in their temporal order (”reversing” give would lead to take).

• Joint training is effective. When training the model as a whole, the per-
formance of the individual networks improved. Furthermore, fusing both CNNs
with their joint method, they achieve better results than when using an SVM to
combine them.

• Object localization is crucial.

Furthermore, they evaluated their model against a state-of-the-art method and against
the two-stream model from Simonyan and Zisserman [78] (which can be seen as a prede-
cessor model of this work) on the previousely mentioned datasets, outperforming both
of them.

3.3 Pose-based Models

Another approach to human activity recognition are pose-based methods. Instead of
treating each frame as a two-dimensional block of pixel-values, knowledge about the
position and joints of the humans is extracted using depth information. Most of the
spatial information is thus being discarded, as for example the background generally
does not contain any hints on what action is taking place. The problem can thus be
seen as recognizing an action from a temporal series of pose variations.

Hierarchical Recurrent Neural Network for Skeleton Based Action
Recognition (2015)

Instead of only making use of two dimensions of an image, it would only be natural
to make use of one more dimension: the depth. Using this extra information, one can
extract the pose of the human subjects on said images. Actions can then be regarded
as changes of the pose over time, i.e. a temporal sequence of movements performed by
the human skeleton [77] [97].

27

3.3. Pose-based Models

Du et al. [18] make use of RNNs, which are strong on temporal series, and propose a
hierarchical model for skeleton based action recognition. They divide the human body
into five parts, the trunk, both arms, and both legs. Each of these parts is then fed into
its own network. The outputs are then slowly fused together until the whole human
skeleton is completed again. An important notice is that, unlike the models presented
so far, they do not employ any CNNs in their model.

An overview of the hierarchical model can be found in Figure 3.5. They use bidirec-
tional recurrent neural networks (BRNN) [74] at every stage in order to make use of
past and future context for every timestep in the sequence. Layers 1, 3, 5 and 7 are
BRNN layers, layers 2, 4 and 6 are fusion layers, layer 8 is a fully-connected layer, and
layer 9 is a softmax layer for the action classification. Out of the 4 BRNN layers, only
the last one has LSTM cells embedded, the other 3 are simply using the tanh activation
function. The fusion layers are not trainable and their only role is to combine informa-
tion from the previous layer to create the input for the next layer. The first fusion layer
combines the trunk with each of the limbs, the second one creates the upper and lower
body, and finally the last one builds the whole body.

Figure 3.5: The human skeleton is split into five parts (torso, arms and legs) and each
of these parts is fed into its own BRNN to get information about how the
human pose changes over time. The deeper one advances in the network
structure, the more parts are fused together (e.g. right arm and torso in
Layer2), until the complete body is modeled (Layer6).

They evaluated their model on the MSR Action3D [51], the Berkeley MHAD [62],
and the HDM05 [60] datasets. Not only did they compare their approach against
other state-of-the-art ones, they also compared it to variations of their own one. They
wanted to verify that certain architectural choices are indeed leading to better perfor-
mance. Thus, what they tested was: 1) the importance of having bi-directional RNNs
vs having uni-directional ones, 2) the choice of the structure, testing their hierarchical
structure against a deep one which takes the whole skeleton as input, and 3) the ad-
vantage of having LSTM cells in their last BRNN layer.

28

3.4. Hybrid Models

Their findings and results are as follows:

• For the experiments on the different variations, the results are the same on all
three datasets, namely:

1. Bi-directional recurrent neural networks perform better than uni-directional
ones.

2. The hierarchical architecture achieves better performance than the deep
architecture.

3. LSTM-cells in the last layer lead to an increase in performance.

• Compared to the other approaches, they achieve state-of-the-art performance.

• Most of their errors occured through the confusion of similar actions. As they
are only using the skeletal data of the human, actions with a similar spatial and
temporal sequence, e.g. grab and deposit, look akin to the network.

• Their architecture is very cost-efficient. During testing, it only takes 52.46
ms on average to classify a whole sequence (234 frames on average) on a 3.2
GHz CPU. Using uni-directional RNNs it is even faster. It is important to note
however, that the datasets already consisted of the skeletal data, thus factors like
pose extraction from raw frames is not included in their calculation.

3.4 Hybrid Models

Recently, there also emerged approaches which combine the ideas from Section 3.2
and Section 3.3, thus creating two-stream models which also make use of the pose
information.

Two-Stream RNN/CNN for Action Recognition in 3D Videos
(2017)

Zhao et al. [101] propose a two-stream architecture combining a RNN and a CNN.
Similar to Du et al. [18] from the previous section, they use skeletal information and
feed it to an RNN and monitor its changes over time. For their CNN component they
use the 3D CNN from [89] which can be seen as a progression of the one covered in
Section 3.1. Both streams are then combined to classify an action from a video sequence.

Their RNN component takes as input the 3D coordinates of a number of joints repre-
senting the human skeletal. The first two layers of the network are two bidirectional [74]
ones consisting of 300 GRU cells each. These layers are followed by a batch normal-
ization layer [40] which is used to accelerate the training of the RNN. Next there is a
dropout layer [83] with a keep probability of 75% to reduce overfitting, followed by a
fully-connected layer with 600 neurons. Finally, a softmax layer is added to classify the
actions.

The 3D CNN component takes as input 16 RGB frames and extracts spatio-temporal
features from them. The network consists of a total of 8 convolutional layers, 5 max
pooling layers, 2 fully-connected layers and a softmax layer. The model was pre-trained

29

3.4. Hybrid Models

on the Sports-1M dataset [44]. They propose two fusion models: decision fusion and
feature fusion. Their full feature fusion model can be found in Figure 3.6 including
details on the individual components.

Figure 3.6: Top part: the RNN working on the skeletal data, consisting of two bidi-
rectional GRU layers, a batch normalization layer, a dropout layer and a
fully-connected layer. Bottom part: 3D CNN extracting spatio-temporal
features from RGB frames. The first five layers are convolutional layers fol-
lowed by max-pooling. Conv3-5 consist of two convolutions. Conv5 is then
followed by a fully-connected layer. The features from the fully-connected
layers from both networks are then concatented, L2 normalized and fed to
an SVM classifier.

The decision fusion model is basically a voting method. They use trust weights wr

and wc and the highest probabilities of the softmax layer of both networks to make
their decision. The highest probabilty of the softmax layer from the RNN being pr and
the highest one from the CNN being pc, their final decision is calculated as follows: if
wr ∗ pr > wc ∗ pc then return the output from the RNN, else the output from the CNN.

The feature fusion method is similar to the one used by Ma et al. [57] from Section 3.2.
They first train both components indvidually. They then take the features from the first
fully-connected layer from both networks, concatenate them, L2 normalize and finally
feed them to an SVM classifier. In this case however, there is no joint training.

They trained, validated and evaluated their approach on the NTU RGB+D [76]
dataset. The dataset consists of four major modalities out of which they used two: the
3D joint coordinates for their RNN and the RGB frames for their 3D CNN. They did
not only compare their approach to other state-of-the-art approaches but also tested
different settings for their RNN structure. Also, before evaluating their decision fusion
method, they used the results on the validation set to determine the parameters wr and
wc, resulting in wr = 1.00 on both splits of the dataset and wc = 2.88/3.02 respectively.
These values hint that the 3D CNN component gives more hints on what activity is
taking place than the RNN component. Their findings are as follows:

• Concerning the RNN structure, batch normalization, dropout, 2 recurrent
layers and adding a fully-connected layer all help to improve the perfor-
mance.

30

3.4. Hybrid Models

• LSTM and GRU have similar results in performance, however GRUs are faster
at training and testing.

• Their final RNN alone already outperforms state-of-the-art approaches on the
dataset.

• The 3D CNN component performs better than the RNN, which is also
indicated by the values of wr and wc.

• Using combined information achieves the best results, feature fusion outper-
forming decision fusion.

• Features from RNN and CNN are highly complementary. While the
3D CNN alone performs better than the RNN, the CNN can only extract spa-
tiotemporal features from 16 frames (more are not possible due to GPU memory
limitations). The RNN however, can learn motion patterns over the whole se-
quence. The fusion models performing better than the individual components
supports this statement.

• Like Du et al. [18], their two-stream model mostly confuses similar actions,
e.g. putting on a shoe vs taking off a shoe. The authors partly stated the noise
in the skeletal data as an explanation for these errors.

Pose-conditioned Spatio-Temporal Attention for Human Action
Recognition (2017)

Similar to the previous work, Baradel et al. [6] present a two-stream approach where
one stream utilizes pose information and the other one uses RGB data. Even though
the idea is pretty much identical, they handle and process the data in an entirely
different way, as they use a CNN for the pose stream and an RNN for the RGB stream.
Furthermore, they use so-called attention mechanisms to enhance the performance of
the RGB stream by focusing on certain parts of a scene. Both streams are then fused to
take a decision on the activity. A depiction of the approach can be found in Figure 3.7.

The goal of the pose CNN is to extract features about the temporal behaviour of the
pose and correlations between different joints. The network takes as input a 20x300x3
volume. To extract information about the temporal behaviour, they need to look at
multiple consecutive frames at once, which is represented by the first dimension. The
second dimension represents the information about the different joints in each frame.
They define a traversal order for the joints and store each joint’s 3D coordinates. Some
joints are even encoded multiple times in order to put them into relation with their
neighboring parts. This results in 50*3=150 joint coordinates per person. As the activ-
ities they classify involve at most two persons, the second dimension equals 2*150=300.
Note that if only one person is present, the values which would correspond to the second
person are set to zero. The third dimension is the number of channels. They use the
raw pose coordinates (first channel), their velocities (second channel) and their accel-
erations (third channel). The network structure itself is pretty compact, consisting of
three convolutional layers, each followed by a max-pooling layer and employing ReLU

31

3.4. Hybrid Models

Figure 3.7: On the left hand side is the pose CNN which extracts features from poses
from multiple frames at once. On the right hand side is the RGB-stream.
With the help of a spatial and a temporal attention mechanism, its role is to
extract the most important features from a RGB image. Finally, information
from both streams are fused to classify an action sequence.

32

3.5. Unsupervised Learning

as its activation function. The pose features s which are ouput by the pose network are
used at severeal steps of their model.

In order to overcome one of the most common problems of only using pose infor-
mation, namely the confusion of actions which are similar in their motion, they take
additional information from the RGB frames. However, instead of looking at each RGB
frame as a whole, they only focus on specific parts of the image: the hands. Having
information about the pose of the subjects, they crop fixed sized images around the
hand joints and feed it to an Inception V3 convolutional network [86]. Furthermore,
instead of just taking the features extracted by the network as is, they want to dynam-
ically decide which features, respectively which hands play the most important role in
a scene. A spatial attention mechanism is responsible for weighting said features. This
mechanism is realized by a network which consists of a MultiLayer Perceptron (MLP)
with one hidden layer with 256 units and uses the sigmoid activation function. It takes
as input the pose features s and the hidden state ht−1 of a LSTM and outputs weights
pt. These weights are then linearly combined with the features extracted by the Incep-
tion V3 network to produce vt. The aforementioned LSTM has a single layer with 1024
units and its hidden state ht depends on its previous state ht−1 and vt.

At each time step, they also calculate features using the hidden state of the LSTM.
Information from each time step is then usually averaged to make a deduction about
the whole sequence. However, similar to the spatial attention mechanism, it might be
useful to assign a weight to the features of each time step. For their temporal attention
mechanism they also employ another MLP, this time with 512 units. The input to this
network are the pose features s and the weights pt for every t output by the spatial
attention mechanism. The weights output by the temporal attention mechanism are
then linearly combined with the features calculated from the LSTM to output u. Finally,
features from both stream, namely s from the pose-stream and u from the RGB-stream,
are fused.

They evaluated their approach on the NTU RGB+D [76], MSR Daily Activity 3D [94]
and the SBU Kinect Interaction [58] datasets. Their findings include:

• Their approach outperforms state-of-the-art methods on the NTU dataset (the
two-stream model from the previous section was not included though).

• They use transfer learning from the NTU to the MSR and SBU datasets, and
achieve state-of-the-art performance on SBU and a close performance on MSR.

• Fusing both streams achieves better results than the individual streams.

• Attention Mechanisms enhance the performance, especially if the RGB-stream
is treated individually, but also in combination with the pose-stream.

• Adding pose features as an input to the attention mechanisms improves perfor-
mance.

3.5 Unsupervised Learning

The works presented so far are all based on supervised learning: the models are being
taught what they should learn. For this purpose they train on a labeled dataset, mean-

33

3.5. Unsupervised Learning

ing for each input its desired output is known. For example, an image classification
model will be shown 1000 pictures. For each picture it will be provided with a label
which will tell it whether there is a cat or a dog on the picture. After training on these
pictures, the model should be able to map the correct label to a new image of a cat or
a dog.

In unsupervised learning however, these labels are not provided. The model should
learn to infer a function/structure of the underlying unlabeled dataset. One of the most
common applications of unsupervised learning is clustering. Taking the example of the
cat and dog pictures, if the unsupervised algorithm is being told to split the data into
two, then it will probably result in a stack of cat pictures and a stack of dog pictures
as they have distinguishing features. This section will cover an unsupervised learning
work which is closest related to deep learning and human activity recognition. Other
unsupervised methods such as deep belief networks (DBN) [34] will not be covered.

Learning Robot Activities from First-Person Human Videos Using
Convolutional Future Regression (2017)

In their work, J. Lee and M. S. Ryoo [50] do not design a method to recognize human
actions per se, as in classifying them. Rather, they design a method to make a robot
learn them. Similar to how humans can learn activities by watching other persons
perform them and then copying them, the authors of this work make the robot learn
new activities by showing it unlabeled first-person videos of human-human interaction.
The robot, who then ”becomes” the first person agent of said videos, should learn to
understand the temporal structure of the activity and learn how to execute it by itself.

The architecture of their approach consists of two components: 1) the perception
component and 2) the manipulation component. The role of the perception component
is to predict where the hands of the observer and the interacting person will be 1-2
seconds in the future. The manipulation component is then responsible to map this
2D hand information to the actual motoric execution. The details of the manipulation
component will not be covered as the main point of interest consists of the perception
component.

The perception component consists of two CNNs: 1) the hand representation network
and 2) the future regression network. The perception component and its data flow
during testing time (represented by the colored parts) can be seen in Figure 3.8. The
hand representation network is used to extract hand information from a frame X̂t at time
t. For this purpose, they extend the SSD object detection framework [54] with a fully
convolutional auto-encoder having 5 convolutional layers followed by 5 deconvolutional
layers. In a first step features are extracted from the frame g(X̂t) = F̂t. Using these
features the hand locations h(F̂t) = Ŷt are then calculated. This network can detect
hands at time t, the current frame. To further get the prediction for the hand locations
at time t + ∆ the second network, the future regression network, is needed.

The role of the future regression network is to infer the features at time t + ∆:
r(F̂t) = F̂t+∆. The network consists of 7 convolutional layers having 256 filters and
kernel size 5x5, followed by one layer having 1024 filters and kernel size 13x13, followed
by the last layer having 256 filters and 1x1 kernel size. The network is trained using the
following loss function: argmin

∑
t ||r(F̂t)− F̂t+∆||22. Furthermore, the network does

34

3.5. Unsupervised Learning

not only use the information at time t, but also makes use of the previous K frames to
obtain F̂t+∆: r(F̂t, ..., F̂t−(K−1)) = F̂t+∆. The final pipeline then looks as follows: first,

features F̂t are extracted from frame X̂t. These are then fed into the future regression
network to obtain F̂t+∆. From these features the hand locations Ŷt+∆ = h(F̂t+∆) are
calculated.

Figure 3.8: The data flow of the perception component at testing time. First, features
get extracted from a frame g(X̂t) = F̂t (top part). Next, using these features,
the features at time t + ∆ are infered by the future regression network
r(F̂t) = F̂t+∆ (middle part). In the last step, the hand locations at time
t + ∆ are then calculated from the features output by the future regression
network Ŷt+∆ = h(F̂t+∆) (bottom part).

The hand representation network is trained on the EgoHands dataset [5], consisting
of 4800 frames with hand labels. The authors added another 466 to train their network.
Even though this part of the perception component is trained using supervised learning,
the main part of learning activities does not require labeled data. The future regression
network is trained on an unlabeled dataset created by the authors consisting of 47 first-
person human-human interaction videos. The dataset consists of two different actions.
Adding another action to the robot’s repertoire would only require to record a few
human-human interaction videos of the desired actions. The whole process of labeling
the entire data can be omitted.

Evaluating unsupervised methods is difficult as, contrary to supervised learning, there
is no ground truth or correct asnwer. They evaluated their perception component,
which partly consists of supervised learning, against different baselines using other
feature extractors or a different way to simulate the future regression network. Out
of the contestants their model proved to be the best. They also concluded that using
information of the past K = 10 frames increases the performance in predicting hand
positions. To evaluate their whole model they conducted a user study where their model

35

3.6. Recap and Runtime Analysis

scored an average of 3.29 (1:bad - 5:good). However, only 12 users participated in the
study. Lastly, their model takes around 100ms per frame on a Nvidia Pascal Titan X
GPU.

3.6 Recap and Runtime Analysis

To tackle the challenge of recognizing human activities from video with deep learning,
quite a few methods have been proposed. One can extract spatio-temporal features
from a video (Section 3.1), or one can seperate both dimensions and treat them seper-
ately (Section 3.2). Abstracting an activity to a temporal sequence of the pose of a
person (Section 3.3) or making use of RGB frame information in addition to the skele-
tal information have been researched (Section 3.4). Furthermore, there have also been
works in the domain of unsupervised learning (Section 3.5).

In most of the cases, the main focus of the literature lies in the accuracy of their
approaches. They measure the performance of their models based on how well they can
classify actions in a sequence. However one factor which is often neglected, but plays
an important role in most of the practical use cases, is how long it takes to classify
such a sequence. For example when monitoring elderly people, it is of course great to
recognize that a person has fallen down with an accuracy of 99.9%, however, it becomes
quite useless if it takes an hour to classify the activity as it could already be too late.
Even worse for autonomous cars where a fraction of a second can matter. Another
point which is often used in the literature but cannot be applied in practical scenarios,
is the usage of future information through after the fact recognition. Sequences are
often considered as a whole where everything in the sequence is already known from
the beginning. Some of the presented works use for example a time window centered
around the current frame. In the said time window they use information from past
frames as well as future frames. In practice however, explicit information of future
frames is an unknown factor.

As some of the presented works do not expicitly state anything about the runtime
of their models, a rough analysis on it will be provided for those works to see whether
they can perform in weak real-time or not. A summary of the following analysis can be
found in Table 3.1.

Both works from Section 3.1 (3D CNN [42] and Sequential Deep Learning [3]) make
use of a 3D CNN which makes use of frames following the current frame. The authors
don’t state anything about the runtime of their models. The networks themselves are
pretty compact, having only few layers and taking small images as input. However the
hardware, especially the GPUs, at that time (2010/2011) was also a lot more limited
than it is to date. The latter statement leads to believe that these models could probably
not achieve weak real-time.

Simonyan and Zisserman (Two-Stream CNN [78]) also employ future information in
their Temporal stream ConvNet. They do not explicitly mention anything about the
runtime either. They do state though that the calculation of the optical flow takes 0.06s
per pair of frames [9], and that they use 10 frames in their optical flow. This results in
9 pairs of frames for a total of 0.54s of calculation. Zhang et al. [100] who conducted
further studies on Simonyan and Zisserman’s work state a frame rate of 14.3 fps for this
model. However, this is probably the frame rate where the optical flow is calculated in

36

3.6. Recap and Runtime Analysis

a preprocessing step and is not added to the runtime. Given these facts, weak real-time
seems to be feasible for this model.

Ma et al. (Going Deeper [57]) use forward-directional optical flow and thus make use
of future information. Again, no statement about runtime has been made. The hand
segmentation and localization are both based on [56], who state in their work that it
takes around a tenth of a second to infer one image on a NVIDIA Titan X. The rest
of the architecture is similar to Simonyan and Zisserman [78] and the calculation of
the optical flow seems to be the bottleneck. Thus again, weak real-time seems to be
feasible.

Du et al. (Hierarchical RNN [18]) employ BRNNs which make use of frames following
the current one. As a runtime they state 52.46ms for a whole sequence, with around
234 frames per sequence, on a CPU. This results in roughly 0.2ms per frame. The
compact structure of their network and the fact that they only use the pose without
any image context allows them to achieve such a fast runtime. It should be noted, that
the datasets they used in their work already contained the pose information and they
did not have to extract them from each frame. Nonetheless, there are algorithms which
can extract the joint information in weak real-time [77] [88].

Zhao et al. (Two-Stream RNN/CNN [101]) make use of future information in both
of their components, by making use of 3D CNNs and BRNNs respectively. While
they do make a statement about the training time, they do not give any information
about testing time. They only mention that GRUs have a faster computational speed
than LSTMs. The RNN component, being similar to the one from Du et al. [18], can
probably easily achieve weak real-time. The CNN component is based on [89] which
is a progressed version of the ones presented in Section 3.1. The authors of [89] aimed
for a generic, compact, simple and efficient descriptor in their work and state a runtime
of 313 fps, making this component also weak real-time.

Baradel et al. (Pose-Conditioned [6]) make their classification over sub-sequences
of 20 frames. However, they do not state which frames they are using, thus it is
unclear whether they make use of future information or not. For the runtime they
state 1.4ms for a full prediction from features including pose feature extraction. RGB
pre-processing, being the bottleneck, adds 1s on top of it, making the runtime roughly
1s for a sub-sequence of 20 frames.

J. Lee and M. S. Ryoo (Future Regression [50]) do make use of future information in
their work. However, they calculate it themselves and do not take it as a given. As a
runtime they state that it takes ∼100ms per frame on a Nvidia Pascal Titan X GPU.

Even though some works hint whether the spatial or temporal information works bet-
ter for them, a real tradeoff between these dimensions has not been investigated. E.g.
Simonyan and Zisserman [78] state that their Temporal ConvNet performs better on its
own than the Spatial ConvNet, hinting that it might be better to invest in high frame
rates. Karpathy et al. [44], who use 3D CNNs for the general case of video classification,
however state that adding motion information only leads to a small increase in perfor-
mance and spatial information alone can already give a good amount of information on
what is taking place. This makes the idea of determining the SpatioTemporal Tradeoff
worth investigating and a novel concept.

37

3.6. Recap and Runtime Analysis

Approach Runtime Future Information
3D CNN [42] Not stated1 Yes
Sequential Deep Learning [3] Not stated1 Yes
Two-Stream CNN [78] Not stated2 Yes
Going Deeper [57] Not stated2 Yes
Hierarchical RNN [18] 52.46ms per sequence of 234 frames3 Yes
Two-Stream RNN/CNN [101] Not stated2 Yes
Pose-Conditioned [6] 1s per sub-sequence of 20 frames3 Unclear
Future Regression [50] ∼100ms per frame No

1 most likely not achieving weak real-time
2 most likely achieving weak real-time
3 without the preprocessing step of extracting the pose

Table 3.1: Summary of the runtimes of the related works.

38

4 Concept

This chapter first introduces the architecture which is used for the HAR and the de-
cisions behind it. A guideline on how to determine the SpatioTemporal Tradeoff and
how to reproduce it on other datasets is presented. These steps are then elaborated for
the HRC scenario and the newly generated dataset EgoBaxter of this thesis.

4.1 The Architecture - A Sequential Model

Chapter 3 covered several different architectures which are used in the literature to
recognize human activities. Though they all achieve incredible results, some of the
approaches cannot be used in practice. One of the main conditions a practical HAR
application needs to fulfill is to not use future information. Some of the methods
presented in the related work chapter treat sequences as a whole and make e.g. use of
information of frame t+10 at frame t. Explicit information about the future is in practice
however unknown. Furthermore, for most HAR applications to be useful in practice,
they need to work with a frame rate of at least 1 fps. The architecture from this thesis
should be applicable in practice and thus needs to fulfill both aforementioned conditions.
An extension of Table 3.1 can be seen in Table 4.1, comparing the architecture of this
thesis to the ones from Chapter 3.

Approach Runtime Future Information
3D CNN [42] Not stated1 Yes
Sequential Deep Learning [3] Not stated1 Yes
Two-Stream CNN [78] Not stated2 Yes
Going Deeper [57] Not stated2 Yes
Hierarchical RNN [18] 52.46ms per sequence of 234 frames3 Yes
Two-Stream RNN/CNN [101] Not stated2 Yes
Pose-Conditioned [6] 1s per sub-sequence of 20 frames3 Unclear
Future Regression [50] ∼100ms per frame No

This Thesis Weak real-time No

1 most likely not achieving weak real-time
2 most likely achieving weak real-time
3 without the preprocessing step of extracting the pose

Table 4.1: Comparison of the architecture of this thesis to the ones presented in the
related work chapter (Chapter 3).

Not making use of any future information already excludes employing methods like
3D CNNs or BRNNs. Pose information seems like a feasible option, however it was
decided to stick with RGB frames. RGB images are typically easier to retrieve and the
CNNs used in this thesis were pre-trained using RGB images. Parallel architectures

39

4.1. The Architecture - A Sequential Model

seem unsuitable to determine the tradeoff and unsupervised methods are also not the
aim of this thesis. Thus, it was decided to use a sequential model, similar to Baccouche
et al. [3], but using a regular CNN instead of a 3D CNN. Such an architecture of using
a CNN in sequence with an RNN has also been employed in diverse video analysis
tasks [61] [17] [98] [91], some including activity recognition. Optical flow is used in some
of these works as well as in some of the related work. When using backward directional
optical flow one can avoid using future information. However, the calculation of the
optical flow adds up to the per frame calculations possibly reducing the achievable frame
rate. It was decided not to use it in this thesis, however it is a point worth investigating
in a future work.

Guideline

A general guideline for determining the SpatioTemporal Tradeoff for such a sequential
architecture is as follows:

1. Decide on the data
The first step is to decide on a dataset on which to train the sequential architec-
ture. This could be one of the many publicly available datasets such as Sports-
1M [44], or one could use a self-created dataset as is the case for this thesis.

2. Train the spatial component
As the outputs of the spatial component are the inputs to the temporal compo-
nent, the former has to be trained first. The role of this component is to extract
information from the spatial dimension, in this case single frames. Furthermore,
in order to determine the SpatioTemporal Tradeoff, multiple spatial components
with various speeds and accuracies are required. In this thesis, convnets are used
for the spatial component. These networks need to be evaluated before moving
to the next step, as it would be ineffective to use CNNs which are too inaccurate.

3. Train the temporal component
In order to classify the different activities, the temporal component is then trained
on action sequences by using the ouputs of the spatial component as its input.
As there are multiple spatial units, numerous temporal components have to be
trained as well. The role of this component is to add the temporal dimension to
the spatial information extracted from single frames. For this component RNNs
are used in this thesis.

4. Determine the SpatioTemporal Tradeoff
The SpatioTemporal Tradeoff can be determined from the evaluation of the tem-
poral component, which represents the evaluation of the complete architecture.
If less, but more accurate data provided by the spatial component achieves the
highest accuracy, then the tradeoff is more on the spatial side. Vice versa, if the
temporal component performs better with more, but less accurate data then the
tradeoff is situated more on the temporal side.

A flowchart of the guideline can be found in Figure 4.1. Joint training, i.e. training the
sequential architecture end-to-end is also possible (combining steps 2 and 3 to a single
one), but is not covered in this thesis.

40

4.2. EgoBaxter - A Baxter PoV Dataset

Figure 4.1: Flowchart of the guideline on how to determine the SpatioTemporal Trade-
off.

4.2 EgoBaxter - A Baxter PoV Dataset

The first step is to decide on the dataset to train and test the architecture on. There
are quite a few existing datasets on human activity recognition, however there are a few
issues with these as to why they are impractical for this thesis. One reason being that
most of the datasets are either egocentric, e.g. GTEA [21] or GTEA gaze [22], or from a
third-person point of view, e.g. KTH [73] or ActivityNet [20]. The egocentric datasets
focus around recognizing the actions performed by the observer himself. In third-person
videos the observer himself is not involved in the actions themselves. However, Baxter
is supposed to interact and collaborate with surrounding humans and is thus required
to recognize what is going on from its own point of view. This issue of first-person
activity recognition was first tackled by Michael Ryoo and his colleagues [72]. However,
the problem with their first-person dataset (JPL-Interaction dataset) is that it is not
related to HRC, as it includes actions such as hugging the observer or punching the
observer. Thus, it was decided to create a new dataset from Baxter’s point of view:
EgoBaxter.

As there is no need to create a gigantic dataset with a broad range of different actions
for the purpose of determining the SpatioTemporal Tradeoff, it was decided to limit the
dataset to the following two activities:

1. Give: handing a tool to the robot.

2. Request: asking the robot for a tool.

These two activities are similar in execution, in both cases a human reaches his
arm/hand towards the robot. The difference lies in whether the person is holding a tool
in his hand or not. For purely pose-based HAR approaches, as presented in the related
work chapter, these actions might be difficult to distinguish.

The tool used in the handover is a yellow spirit level as depicted in Figure 4.2. In a
practical scenario, a human worker might need more tools than just a spirit level, e.g. a

41

4.2. EgoBaxter - A Baxter PoV Dataset

hammer or a screwdriver. However, these tools were not included for two reasons. First,
the goal of the thesis is to determine the SpatioTemporal Tradeoff. There is no need
to create a recognizer which can differentiate between several different tools. Second,
in HRC scenarios the human’s safety has top priority. Thus, one should refrain from
equipping a robot with potentially dangerous objects.

Figure 4.2: The tool used for the handover.

EgoBaxter was further split into two parts: one part is used to train and test the
CNN on, the other part is used for the RNN. The reason for dividing the data into two
parts is that the RNN should not train/evaluate on outputs from data the CNN already
trained on. The CNN part consists of 45 scenes recorded with 5 different individuals.
Each individual performs the Give action 3 times, the Request action 3 times, as well
as 3 scenes where they simply work with or without the tool. The RNN part consists of
160 scenes recorded with 8 different individuals. Each individual was asked to perform
the Give and Request action 10 times each, 5 times with their left hand and 5 times
with their right hand. There was only one action performed in each of these scenes.
The scenario is located at the HRC lab of the DFKI Saarbrücken and is depicted in
Figure 4.3.

Figure 4.3: The scenario of EgoBaxter.

42

4.3. Training and Evaluating Neural Networks

Additional Data

In addition to EgoBaxter, some more data was retrieved in order to be used for the CNN
component. As hands play an important role in activity recognition, it was decided to
make use of the EgoHands [5] dataset. This dataset contains images of two people
interacting in different scenarios recorded from an egocentric point of view, and focuses
on the hands. Furthermore, additional frames of hands and the tool have been recorded
(see Section 4.4.1).

In order to train the networks with supervised learning, the next step is to label the
aquired data. For the CNN data this means to draw bounding boxes around each object
occurence in each frame. For the RNN data each frame needs to be assigned with an
action label: Give, Request or Dummy (in case none of both actions is taking place).
This process, and also more details on EgoBaxter (e.g. number of frames, resolution,
etc.) and the additional data are covered in the implementation chapter (Chapter 5).

4.3 Training and Evaluating Neural Networks

It is common practice to split the whole dataset into two different parts: the training
set and the testing or evaluation set. As the name suggests, the network trains on the
training set which should make up around 80-90% of the whole data. The network is
then frequently getting evaluated on the testing set, which is unseen data to the network
and does not influence the training in any way. It is simply meant to check how well
the network performs on new data at different stages of the training. There are a lot
of values which can be measured during the training respectively the evaluation, the
two most import ones being the loss and the accuracy. In supervised learning, the
loss measures the difference between the prediction on a training sample and the actual
ground truth of said sample. The goal of the training is to minimize the training loss by
adjusting the weights of the network. The accuracy is typically defined as the number
of correctly classified instances divided by the number of all instances, and expressed
in percent. Loss and accuracy are related to each other in a way that when the loss
decreases, the accuracy usually increases.

Overfitting and Underfitting

One common problem which tends to occur when training neural networks is overfitting.
When a network is overfit it means that it learned the training data too well, in a
sense that it performs badly when seeing new data. The opposite, but less common
problem is called underfitting and occurs when the model is too simple to understand the
underlying structure of the data. An ideal model lies in between, being neither underfit
nor overfit. This is also often referred to as the bias-variance tradeoff. An example can
be seen in Figure 4.4. The left model is too simple to capture the underlying structure,
as too many points are classified incorrectly. The right model classifies all of the points
correctly, which might seem good at first. However, some of these points are outliers
and the model will probably have poor performance on new, unseen data. A balanced
model is depicted in the middle. It classifies most of the data points correctly without
paying too much attention to potential outliers.

43

4.3. Training and Evaluating Neural Networks

Figure 4.4: Example of an underfit, an ideal and an overfit model. Figure from 1.

Detecting and Preventing Overfitting

Overfitting can be detected from the training loss and the testing loss or testing accu-
racy. If the training loss decreases (Figure 4.5 red) but the testing loss (blue) starts
increasing then the model starts to overfit. Analogously, one can notice overfitting
when the training loss decreases and the testing accuracy (cyan) starts dropping. Small
fluctuations in the testing loss or testing accuracy are possible and it should only be
considered as overfitting if a general increase respectively decrease is notably visible.

Figure 4.5: Detecting overfitting from the training loss (red) and the testing loss (blue)
respectively the testing accuracy (cyan).

1The book Deep Learning by Adam Gibson and Josh Patterson

44

4.3. Training and Evaluating Neural Networks

There are several ways to prevent overfitting including dropout [83], reducing the
number of parameters in the network, increasing the number of data samples or simply
stopping the training before the testing loss increases respectively the testing accuracy
decreases.

Cross-Validation

In order to estimate the performance of a model in general, it is common practice to
use cross-validation [84]. For cross-validation the data is divided into multiple parts, it
is then trained on a subset of these parts and evaluated on the remaining ones. In this
thesis, the so-called leave-one-out cross-validation is used, i.e. the models are trained
on all of the parts except for one, on which they are evaluated. Cross-validation can
be applied in an exhaustive manner, meaning that this process is repeated until each
of the parts has been used for the evaluation exactly once. An example of exhaustive
leave-one-out cross-validation can be seen in Figure 4.6.

Figure 4.6: Example of exhaustive leave-one-out cross-validation when the data is split
into 5 parts. The network is trained on the data in blue and evaluated on
the data in red.

Mean Average Precision (mAP)

So far, the term of accuracy has been used to describe the performance of a network.
However, the object detection component does not use the standard definition of accu-
racy (#correct/#all), but the so-called Mean Average Precision (mAP) as a metric to
measure the performance.

There are different definitions of the mAP and different ways on how to calculate
it. The calculation of the mAP presented here is based on the Pascal VOC detection
metric [19] which is the one used for the object detection component in this thesis.
The mAP is the mean of all the Average Precision (AP) values across the classes. The
AP for a class is essentially defined as the area under the precision-recall curve. The
precision is the ratio between correct predictions and total predictions, and the recall
is ratio between correct predictions and the total number of correct instances. For
example, an object detection algorithm should detect the cats in an image of 10 cats
and 10 dogs. The algorithm outputs 8 bounding boxes, 6 which actually contain cats,

45

4.4. Sequential Part 1 - The Spatial Component

and 2 which were misclassified and contain dogs. The precision is then 6/8 and the
recall is 6/10. In order to calculate the precision and the recall, true positives and false
positives need to be identified. For this purpose, the Intersection over Union (IoU) of
the predicted bounding box and the ground truth is calculated. If this value is bigger
than a certain threshold the detection is considered a true positive, else a false one.
In the Pascal VOC this threshold is set to 0.5. Furthermore, each detection outputs
a confidence score along with the bouding box and the class label. This score is also
accounted in the calculation of the precision-recall curve. The AP, and thus also the
mAP, results in a value in the interval of [0:1] and can be seen as a metric which is
similar to the standard accuracy. Both can be expressed in percent and the higher the
better. Hereafter, mentioning the accuracy of the CNN refers to the mAP. The RNNs
use the standard definition of accuracy for their evaluation.

4.4 Sequential Part 1 - The Spatial Component

The next step is to decide on the spatial component, namely the CNN. In order to
determine the SpatioTemporal Tradeoff, several networks with different accuracies re-
spectively speeds are needed. In this thesis, the CNNs are further used to localize
objects of interest in the single frames, as for a practical application, Baxter also needs
to know where to grab respectively put the tool. Though, in order to determine the
tradeoff, CNNs without object detection could be used in this step as well.

4.4.1 Objects of Interest

The choices of the objects the CNN should detect are rather straightforward for the
EgoBaxter dataset. The first obvious choice is to detect the tool as it is the main part
of the handover. As suggested in [5] [6] [57], the hands are giving a lot of information
of the action a person is performing. Thus, left hand and right hand are two further
classes of the object detection component. It is important to distinguish both hands
and not just use the general category hand. As information about the boxes will be
given to the RNN component, the network might mix up the boxes of the hands which
might in turn lead to a worse performance. The face was also considered as a class as it
might give hints on a person’s intention. However, in a lot of frames the face was only
partially visible or not visible at all. Therefore, it was decided to keep it at the three
classes left hand, right hand and tool.

4.4.2 Transfer Learning

Building CNNs from scratch is a tedious task, even more so when several networks
with different speeds and accuracies are needed. Therefore, a common practice in deep
learning is to make use of transfer learning [63] [99]. The idea is to reuse the knowledge
aquired to solve one problem to solve another, similar problem. In case of CNNs, one
typically takes a network which was pre-trained on a huge dataset, and retrains it on
another, generally a lot smaller dataset. The learned features from the first layers are
usually generic and are applicable to many datasets and tasks. Thus, they make a good
starting point. A depiction of the idea of transfer learning can be found in Figure 4.7.

46

4.4. Sequential Part 1 - The Spatial Component

Figure 4.7: The idea of transfer learning for neural networks is to use a model which was
pre-trained on a huge dataset as a starting point. In this case, the task of
object detection is the same and the difference lies in the classes to detect,
i.e. the dataset.

Fortunately, TensorFlow [1] provides a collection of CNNs with object detection [39]
(Figure 4.8). The models used in this thesis are listed in Table 4.2 and the complete list
can be found in their model zoo2. The models from Table 4.2 have been pre-trained on
the Microsoft Common Objects in Context (MS COCO) dataset [53], and the mAP was
calculated based on the corresponding evaluation protocol. The dataset contains 328k
images, with 2.5 million labeled instances of 91 different object classes. The modelnames
from Table 4.2 are made up of the object detection algorithm and the underlying CNN
architecture. E.g. ssd mobilenet v1 coco uses the SSD algorithm with the Mobilenet
CNN [38] to extract features. The Faster R-CNN models also have a lowproposals
version. In the default version the RPN always outputs 300 box proposals, whereas the
lowproposals models reduce this number, thus increasing the speed without a significant
loss in accuracy. In their paper [39], they state that 50 proposals is probably a good
sweetspot, but also showed examples with 100 proposals to compare Faster R-CNN to
R-FCN. However, none of these numbers were explicitly confirmed to have been used
in their model zoo.

These models are then retrained on EgoBaxter and the additional data in order to
detect the three classes left hand, right hand and tool. The CNNs are evaluated using
exhaustive leave-one-out cross-validation on the 5 individuals of the EgoBaxter CNN
data before moving on to the next step, as it would be inefficient to use inaccurate
outputs as the input to the temporal component.

2https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/

detection_model_zoo.md last accessed on 26.06.2018
3https://github.com/tensorflow/models/tree/master/research/object_detection last ac-
cessed on 26.06.2018

47

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/tree/master/research/object_detection

4.4. Sequential Part 1 - The Spatial Component

Figure 4.8: Example image of the TensorFlow object detection API3.

Modelname Speed (in ms) mAP
ssd mobilenet v1 coco 30 21
ssd inception v2 coco 42 24
rfcn resnet101 coco 92 30
faster rcnn resnet101 coco 106 32
faster rcnn resnet101 lowproposals coco 82
faster rcnn inception resnet v2 atrous coco 620 37
faster rcnn inception resnet v2 atrous lowproposals coco 241

Table 4.2: The TensorFlow models used in this thesis. The timings were performed
using a Nvidia GeForce GTX Titan X. The mAP was calculated based on
the MSCOCO evaluation protocol.

48

4.5. Sequential Part 2 - The Temporal Component

4.5 Sequential Part 2 - The Temporal Component

The third step is to add the temporal dimension by combining the information from
several consecutive frames to form temporal sequences. For this purpose, recurrent
neural networks are used in this thesis. The RNNs are implemented in Keras [12], a
high-level neural network API which can use TensorFlow as its backend.

For this component transfer learning is unfortunately not an option, as a similar task
from which knowledge could be transferred from was not found. Thus, the RNNs need to
be built from scratch. For the CNNs the architecture of the networks was already given
by the TensorFlow models which were used for transfer learning. As these architectures
have proven to work well for the task of object detection, it seems to be a reasonable
choice to adopt these architectures. This leads to some additional variables in the RNN
such as the number of layers or the number of nodes per layer. Using an LSTM or a
GRU, or what kind of input to give to the temporal component are further parameters.

As the RNNs train on the same CNN outputs for several iterations, it was decided
to write these outputs to disk. This avoids that the computation of the CNN outputs
becomes the bottleneck of the RNN training. To simulate the different frame rates of
the object detection models, the RNN receives less inputs from the slower models in a
given time interval than from the faster models. For example, on a time interval of 1
second, the RNN migth only receive information about 2 frames from the slower models,
whereas it might obtain information about 5 frames from the faster ones. Moreover,
the RNNs are compared to a baseline without memory using only the information of
single frames as input instead of sequences.

In addition, it was decided to train several networks using the same settings. As the
networks are built and trained from scratch, they are initialized with random weights.
Thus, even using the same settings, the same network might achieve different accuracies.
In order to gain a rough insight on how well they are able to perform, the accuracies of
these multiple networks are then averaged. For the CNNs this step is not performed as
they already have a solid starting point from the transfer learning and are not initialized
with random weights.

The evaluation process is similar to that of the convnets using leave-one-out cross-
validation on the 8 individuals from the EgoBaxter RNN data. However, for this evalu-
ation, cross-validation is used in a non-exhaustive way, only performing three iterations
of training and testing.

4.6 Determining the SpatioTemporal Tradeoff

The SpatioTemporal Tradeoff can be determined from the end results of the RNN eval-
uation, as they represent the evaluation of the complete architecture. If the recurrent
networks using the inputs from the slower, more accurate CNNs achieve the highest
accuracy, then the tradeoff favors the spatial side. On the other hand, if the RNNs
perform better on more inputs of a less precise CNN, then the tradeoff falls to the tem-
poral side. A third outcome could be that a balance between both works best, using
CNNs of intermediate speed and accuracy.

49

5 Implementation

This chapter covers the technical details of the previous chapter. This includes details
on the EgoBaxter dataset and a description of the labeling process and the used tools,
the pipeline on how to use this data to retrain the TensorFlow object detection models
and details on their training settings, as well as the different RNN parameters and how
they are configured and trained.

5.1 EgoBaxter - A Baxter PoV Dataset

EgoBaxter is a newly introduced dataset and contains short scenes of a human agent
interacting with a Baxter from the robot’s point of view. The activities include Give
and Request using a yellow spirit level (Figure 4.2) as the tool of the handover.

5.1.1 Acquisition

The dataset was recorded using Baxter’s head camera at a resolution of 640x400 and
at a frame rate of 10 fps (see Table 5.2 for the choice behind this frame rate).

The data for the CNN consists of 45 scenes for a total of 3653 frames. Each of the 5
individuals performed the actions Give and Request 3 times each, and were recored for
another 3 scenes where they were simply working with or without the tool.

Additional frames of both hands and the tool, hereafter referred to as HandsTools,
were recorded in order to provide more data for the CNN. This includes 447 frames
of both hands from two different persons, and 326 images of the tool, on which both
hands are visible most of the time.

The data for the RNN consists of 160 scenes, being performed by 8 individuals for a
total of 6955 frames. This results in an average of around 43 frames respectively 4.3s
per scene. Each individual was asked to perform the Give and Request action 10 times
each, 5 times with the left hand and 5 times with the right hand. Out of the 6955
frames, 4016 frames were labeled with Dummy (no-action) (∼57.75%), 1556 with Give
(∼22.37%) and 1383 with Request (∼19.88%), each handover action roughly lasting
between 15 and 20 frames. During each scene exactly one action was performed.

Furthermore, the EgoHands dataset [5] is being used in addition to EgoBaxter in
order to train the object detection component. EgoHands includes 4800 labeled frames
of one-on-one human interactions of 4 different actions from an egocentric point of view.
Both hands of the observer and the interactor are annotated with pixel-level ground
truths. An overview of all the data used in this thesis can be seen in Table 5.1.

51

5.1. EgoBaxter - A Baxter PoV Dataset

Data Name Used For #scenes #frames Labels
EgoBaxter CNN CNN 45 3653 left hand, right hand, tool
HandsTools CNN / 773 left hand, right hand, tool
EgoBaxter RNN RNN 160 6955 Dummy, Give, Request
EgoHands CNN 48 4800 left hand, right hand

Table 5.1: Overview of all the data being used to train and evaluate the networks in
this thesis.

5.1.2 Labeling

As the networks are trained with supervised learning, each input needs to have a ground
truth assigned to it. For the CNNs the object instances in each frame need to be
annotated with bounding boxes. For the RNNs the frames in each sequence need to be
labeled with an action label.

Labeling the Frames

Tzutalin’s LabelImg1 (version 1.5.0 for Windows) was used to label the bounding boxes
in each frame. The tool is straightforward to use as the bounding boxes can simply be
drawn with the mouse on top of the image (Figure 5.1). After the box is drawn a label
needs to be assigned to it, which can be chosen from a set of predefined labels (which
the user can set by a simple .txt file) or by manually typing it in. A box was drawn if
the object of interest was clearly recognizable, e.g. if only a part of a finger was visible
then that part was not labeled as a left or right hand. The boxes are then saved in a
.xml file where for each box the class label, xmin, ymin, xmax and ymax are stored.

Figure 5.1: Interface of LabelImg1.

1https://github.com/tzutalin/labelImg last accessed on 27.06.2018

52

https://github.com/tzutalin/labelImg

5.1. EgoBaxter - A Baxter PoV Dataset

For EgoHands, the 4800 frames are already labeled. However, the labels are pixel-level
ground truths, where each pixel of the object is marked, instead of being surrounded
by bounding boxes. Victor Dibia [93] kindly provides a script to generate the bounding
boxes from the pixel-level annotations. This script runs over all the annotated pixels
and retains the biggest and smallest x and y values, which are basically representing
the bounding box (Figure 5.2). These are then written to a .csv file. Some minor
adjustments were made to match the categories of this thesis.

Figure 5.2: Example conversion from pixel-level ground truth to bounding box [93].
Only the outmost pixels of the pixel-level ground truths are displayed.

Create TFRecords

In order to train and evaluate the TensorFlow models, the data needs to be transformed
into the TFRecord (.record) file format. This requires two steps: 1) transform the .xml
files to .csv files 2) transform the .csv files to .record files. A flowchart of the steps can
be found in Figure 5.3. The scripts xml_to_csv.py and generate_tfrecord.py from
Dat Tran’s racoon detector2 were used for these two steps.

Figure 5.3: Flowchart of the steps to generate the TFRecords from raw images.

For the xml_to_csv.py script only the folder where the .xml files are stored needs to
be adjusted. The .csv file stores the image filename, image width, image height, class,
xmin, ymin, xmax and ymax values for each bounding box. To generate the TFRecords

2https://github.com/datitran/raccoon_dataset last accessed on 28.06.2018

53

https://github.com/datitran/raccoon_dataset

5.1. EgoBaxter - A Baxter PoV Dataset

with the generate_tfrecord.py script the folder where the image files are, which are
listed in the .csv file, needs to be adjusted. Furthermore, each label has an ID assigned
to it. In this case:

1 def c l a s s t e x t t o i n t (row labe l) :
2 i f row labe l == ’ l e f t hand ’ :
3 return 1
4 e l i f row labe l == ’ r i g h t hand ’ :
5 return 2
6 e l i f row labe l == ’ t o o l ’ :
7 return 3
8 else :
9 None

The .record files can then be used as input to train and test the TensorFlow models.
Creating different training and testing setups is as simple as rearranging image and .xml
files and rerunning the two above scripts after adjusting the target folder accordingly.

Labeling the Sequences

For the sake of assigning an action label to each frame in a sequence an own Sequence-
Labeler was developed in Java (Figure 5.4). The SequenceLabeler displays the current
frame in the center, the previous frame to the left and the next frame to the right. The
labels one can assign to the frames are shown in the radio group in the upper-right
corner. Pressing ’w’ or hitting the ’Write’ button will write the selection to a .txt file
in the format of filename : label, e.g. scene122_image047.png : Give. Frames
from the beginning to the end of a handover are labeled with Give/Request. All the
other frames are labeled with Dummy.

Figure 5.4: The interface of the SequenceLabeler developed in Java.

54

5.2. The Spatial Component

5.2 The Spatial Component

The spatial component was implemented in TensorFlow [1] (GPU version 1.3.0) using
the August 11 2017 release of their object detection API3. The Nvidia CUDA Toolkit4

(version 8.0) and Nvidia cuDNN5 (version 6.0) were further installed in order to use
the GPU version of TensorFlow. To shorten the long names of the models from Ta-
ble 4.2, the version and pre-trained dataset are omitted, e.g. ssd mobilenet v1 coco will
hereafter simply be called ssd mobilenet. Furthermore, as the lowproposal models have
a faster runtime without a significant loss in acccuracy, they will be used instead of
the version where the RPN outputs 300 proposals. Thus, faster rcnn resnet101 refers
to the faster rcnn resnet101 lowproposals coco model and faster rcnn inception resnet
refers to the faster rcnn inception resnet v2 atrous lowproposals coco model. As it was
not really clear from their paper [39] if lowproposals refers to 50 or 100 proposals, it
was decided to set it to 100.

The speeds indicated in Table 4.2 were reported on a Nvidia GeForce GTX Titan
X. The local computer on which the HAR application will later on be tested has a
different GPU, namely a Nvidia GeForce GTX 1080. To determine the runtime on said
machine, the different models were run on 320 images and the times were averaged. A
comparison to the Titan X GPU can be found in Table 5.2.

Modelname Titan X (ms) GTX 1080 (ms) FPS on GTX 1080
ssd mobilenet 30 151 ∼6.6
ssd inception 42 158 ∼6.3
rfcn resnet101 92 226 ∼4.4
faster rcnn resnet101 82 240 ∼4.2
faster rcnn inception resnet 241 486 ∼2

Table 5.2: Comparison of the speed (in ms) on a Nvidia GeForce GTX Titan X (reported
by the TensorFlow object detection API) and a Nvidia Geforce GTX 1080
(local machine).

The choice for the frame rate of 10 fps at which EgoBaxter was recorded is based on
this table. As even the fastest model can only process around 6 frames per second, a
recording framerate of 10 fps is sufficient for EgoBaxter.

5.2.1 Configuring the Detection Models

Each of the object detection models comes with a configuration file (.config) which
is used when training respectively evaluating a model. There are a lot of parameters
which can be set in such a file, and one could even change parts of the architecture. In
the following these parameters will be listed before the config files are explored in more
detail.

3https://github.com/tensorflow/models/tree/master/research/object_detection last ac-
cessed on 28.06.2018

4https://developer.nvidia.com/cuda-toolkit last accessed on 28.06.2018
5https://developer.nvidia.com/cudnn last accessed on 29.06.2018

55

https://github.com/tensorflow/models/tree/master/research/object_detection
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cudnn

5.2. The Spatial Component

Parameters

Changing parameters in a CNN involves training the network again. As the training is
a computationally expensive step, it was decided to try to keep as many parameters as
possible fixed and only change those which really need to be changed.

The CNNs are not built from scratch, but are based on existing models which are
retrained on the EgoBaxter dataset using transfer learning. As the architectures have
already proven to work well for the task of object detection there is no need to reinvent
the wheel. Thus, it was decided not to change the structure, e.g. not changing the
number of layers or the number of filters etc. This reduced the number of possible
parameters, but there are still a few variables left, including:

• Batch Size
The batch size is the number of samples which are propagated through the network
before the weights are updated. For example, for 100 samples and a batch size of
5, the network is getting updated 20 times to process all the samples. The default
values are 24 for ssd mobilenet and ssd inception and 1 for the other three models.
This parameter was fixed at said default values.

• Data Augmentation
Data Augmentation is one way to cope with overfitting. Common ways to aug-
ment the data is to add horizontally and/or vertically flipped versions of the
samples to the training data. The random_horizontal_flip data augmentation,
which was set for all the models, was disabled. Mirroring the image will lead to
difficulties when distinguishing the left hand from the right one, the same issue
was descriebd in [5]. Both SSD models further have the ssd_random_crop data
augmentation option which was left enabled.

• Dropout Rate
Dropout [83] is also one of the most commonly applied ways to help reduce over-
fitting. When using dropout a random portion of the inputs to a neuron is simply
set to 0 at each update during training. Surprisingly, dropout was by default not
enabled in the TensorFlow models. The dropout_keep_probability was set and
fixed to 0.8 for all models except rfcn resnet101 where dropout was not applicable.
Note, the dropout rate is often expressed as the probability to drop inputs, here
however, it expresses the probability at which inputs are kept.

• Learning Rate & Learning Decay
To understand the meaning of the learning rate it is important to have an idea
of how gradient descent works. A nice metaphor to gradient descent is climbing
a hill where the goal is to reach the summit. The size of the steps one can take
is fixed. If this size is large, then one can reach the top faster, however one also
risks overshooting the summit. If this size is small, then one can make sure to
reach the peak, however this comes at the cost of taking a long time to reach it.

The learning rate can be seen as this step size and controls how much the weights
are adjusted during each update. A high learning rate reduces the training time,
but might also lead to the network not converging (overshooting the top). A low
learning rate will make sure the network converges at the cost of a high training

56

5.2. The Spatial Component

time. In practice the learning rate is thus generally set to a high value in the
beginning and reduced throughout the training process. As transfer learning is
employed, the learning rate does not have to start as high as if it would be for
a new model. For this parameter mostly the default values were adopted. The
decay of the learning rate was set dependant on the step number.

• Optimizer
The optimizer is used to update the weights in the network in order to minimize
the loss. Most optimizers are based on some form of gradient descent. These
were left at their defaults which is the RMSProp [87] for the SSD models and
MomentumOptimizer [65] for the R-FCN and Faster R-CNN models.

• Step Number
The number of steps defines the number of times the weights are updated during
training. This is not to be confused with the term of epoch which is also often used
to define how long a network is trained. Taking the example from the batch size
parameter of 100 samples and a batch size of 5: the network is getting updated
20 times to process all the samples once. In this case it takes thus 20 steps
to process all the samples. If batch size was 1, it would take 100 steps. This
parameter highly depends on the training data and different values were tested
for the different models and input data.

An overview of these parameters and their values can be seen in Table 5.3.

Modelname BatchSize DataAug. Dropout LearningRate Optimizer StepNum
ssd mobilenet 24 random crop 0.8 0.004 RMSProp TBD
ssd inception 24 random crop 0.8 0.004 RMSProp TBD
rfcn resnet101 1 None N/A 0.0003 MomOpt TBD
faster rcnn resnet101 1 None 0.8 0.0003 MomOpt TBD
faster rcnn inception resnet 1 None 0.8 0.001 MomOpt TBD

Table 5.3: Overview of the CNN parameters.

Config Files

The config files for the models consist of five parts:

1. model

The model defines the architecture, i.e. which object detection algorithm and
which feature extractor to use etc. These settings were left as is, except for two
minor changes. First, the number of classes needs to be specified, which is 3 for
EgoBaxter. Second, dropout was enabled with a keep_probability of 0.8 for all
models except rfcn resnet101 for which it was not applicable.

2. train_config

In the train_config things like the batch_size, optimizer, learning_rate,
num_steps and the path to the starting checkpoint, i.e. the pre-trained model,
are specified. This part was tweaked the most for the different training settings,
mainly using different values for the number of steps.

57

5.2. The Spatial Component

3. train_input_reader

In the train_input_reader the path to the TFRecord of the training data as
well as the path to the label_map (see below) need to be defined.

4. eval_config

In the eval_config one can specify how often the network should be evaluated
and the time in between two evaluations. Furthermore, one can set to visualize a
number of samples to see how the network performance evolves over the training.

5. eval_input_reader

Analogously to the train_input_reader, in the eval_input_reader the path to
the TFRecord of the testing data as well as the path to the label_map need to
be set.

The label_map is a .pbtxt file and is similar to what needed to be defined in the
generate_tfrecord.py script: a map of labels and IDs. For EgoBaxter this map looks
as follows:

1 item {
2 id : 1
3 name : ’ l e f t hand ’
4 }
5 item {
6 id : 2
7 name : ’ r i g h t hand ’
8 }
9 item {

10 id : 3
11 name : ’ t o o l ’
12 }

5.2.2 Training the Models

Once the TFRecords, the label map, the config file, and the model are ready, the train-
ing can be launched with the train.py script from the object detection API:

python train.py --logtostderr

--train_dir=training/

--pipeline_config_path=path_to_config/configfile.config

It only needs the config file as input. The folder given by train_dir, in this example
training/, specifies the location where the model will be saved. During the training
process a checkpoint is saved every two minutes by default settings. If there are more
than five checkpoints, the oldest one will be deleted in order to save disk space. Fur-
thermore, an event file is created which is used by TensorBoard (see Section 6.1) to
visualize, among other things, the training loss and how it varies during the training.

The networks are trained on a Nvidia DGX-1 which helped reduce the training time
due to its strong performance. Nevertheless, training the CNNs was still a very time
consuming step.

58

5.2. The Spatial Component

Training Settings

For the CNN training exhaustive leave-one-out cross-validation is performed. The CNN
data of EgoBaxter is divided along the different individuals resulting in 5 parts. Here-
after the different cross-validation setups will be referred to as personsplits, resulting
in personsplit1 to personsplit5. Hyperparameters like the the number of steps are first
identified on personsplit1 and are then taken over for the other personsplits. The models
are then trained and evaluated on all the personsplits to check how well they perform
in general. An accuracy of at least 50% would be desirable for all the models before
moving to the temporal component, expecting a similar ranking as in Table 4.2. Some
more experiments are conducted on personsplit1 using additional data as input, namely
adding HandsTools, adding HandsTools and EgoHands, and training the models first
on EgoHands and then on HandsTools and personsplit1. It is expected that similar
observations can be made on the other personsplits, however the experiments are not
explicitly conducted due to the time it would take to train all the networks.

5.2.3 Evaluating the Models

The networks have to be evaluated in parallel with the training in order to be able
to observe the performance during different stages of the training. Analogously to the
training, the evaluation can be launched with the eval.py script from the object de-
tection API:

python eval.py --logtostderr

--pipeline_config_path=path_to_config/configfile.config

--checkpoint_dir=training/

--eval_dir=eval/

The config file is the same for the training and the evaluation, and the directory specified
by checkpoint_dir points towards the directory where the training checkpoints are
saved. The script produces event files which are then saved in the folder specified by
eval_dir. Just like for the event files created during the training, they are used by
TensorBoard in order to visualize certain metrics. In case of the evaluation, these include
the testing accuracy (mAP) and box predictions on sample images. The evaluation of
the spatial component takes place before moving on to the temporal component, as it
would be inefficient to use outputs from CNNs which perform poorly. The evaluation
results are presented in Chapter 6.

Once satisfied with the results, a so-called frozen inference graph which represents
the network model can be generated from a training checkpoint:

python export_inference_graph.py

--input_type=image_tensor

--pipeline_config_path=path_to_config/configfile.config

--trained_checkpoint_prefix=training/model.ckpt-xxx

--output_directory=saved_model

59

5.3. The Temporal Component

This frozen inferenece graph can later on be loaded in applications using TensorFlow
to detect the objects of interest from EgoBaxter. An overview flowchart of the train-
ing/evaluation of the spatial component can be found in Figure 5.5.

Figure 5.5: Overview flowchart of the training/evaluation of the spatial component.
First all the settings in the configuration file need to be made. This config
file is then used in the training and evaluation processes which are run in
parallel. Using the outputs of these processes, the performance of the model
can be checked, and if satisfied, an inference graph can be generated.

5.3 The Temporal Component

The temporal component was implemented in Keras [12] (version 2.1.5), a high-level
neural network API which can be used on top of TensorFlow. Unlike for the spatial
component, transfer learning is unfortunately not possible for this component as no
similar task from which knowledge could be transferred was found. The RNNs are thus
built from scratch.

5.3.1 Building the Recurrent Networks

As the networks are built from scratch, structural choices like the number of layers
and the number of neurons per layer become additional variables. Analogous to the
CNNs, it was tried to keep as many of the parameters as possible fixed. Some of these
parameters also appeared in the CNN and are marked with a *, detailed explanations
for these are omitted:

• Batch Size*
The batch size for the RNNs was fixed to 8.

60

5.3. The Temporal Component

• Dropout Rate*
Dropout rates of 0.2 and 0.4 were tested. Note that in this case they represent
the probabilty at which inputs are dropped, contrary to the CNNs where they
represented the probabilty at which the inputs are kept.

• Learning Rate*
The learning rate was fixed at 0.001, the default value for the corresponding
optimizer.

• Loss Function
The function which is used to calculate the loss during the training. This function
was fixed to the categorical crossentropy loss function.

• Number of Epochs
The number of epochs defines the number of times the complete data is processed
by the network for training. Just like the number of steps for the CNN, this
parameter needs to be determined through running different experiments.

• Number of Layers
This parameter defines the number of recurrent layers in the network, tests were
conducted with 1 and 2 layers.

• Number of Units
Keras uses the term of units, but this is interchangeable with cells or neurons.
Different settings for this parameter were used. In case 2 recurrent layers are
used, the same number of neurons is used in both.

• Optimizer*
The optimizer was fixed to the RMSProp [87].

• RNN Type
Here the options are whether to use an LSTM or GRU, both were getting inves-
tigated.

• Window Size
The window size determines the time interval from which sequences are input to
the RNN. E.g. if said time interval were 2 seconds long, then the candidate frames
are the current one and the 19 frames before it, as the sequences were recorded
with a frame rate of 10 fps. As the CNNs operate at different frame rates, only
a subset of these frames will be used as the input to the RNN. The window size
is expressed in frames and was fixed to 11, the current frame and the 10 previous
ones, which covers a time interval of a bit more than 1 second. More details on
this parameter are clarified in the course of this section.

Additionally to the RNNs, networks with no memory units are used in the experi-
ments. These networks take the outputs of the CNNs as input, just like the RNN, but
they use fully-connected layers instead of the memory layers. The other parameters
stay the same as for the recurrent networks. Networks using the fully-connected layers
are hereafter referred to as dense networks.

61

5.3. The Temporal Component

The LSTM/GRU/Dense layers are followed by a batch normalization layer [40], a
dropout layer [83] and a fully-connected layer to classify the action. A diagram can be
found in Figure 5.6. An example LSTM network based on that diagram can easily be
coded in Keras:

1 model = Sequent i a l ()
2 model . add (LSTM(num cel ls , r e tu rn s equence s=True ,
3 input shape=(t imesteps , t imestep dim)))
4 model . add (LSTM(num ce l l s))
5 model . add (BatchNormalizat ion ())
6 model . add (Dropout (dropout rate))
7 model . add (Dense (num classes , a c t i v a t i o n=’ softmax ’))
8 model . compile (l o s s=’ c a t e g o r i c a l c r o s s e n t r o p y ’ ,
9 opt imize r=’ rmsprop ’ , met r i c s =[’ accuracy ’])

Figure 5.6: Structure of the temporal/dense component with 2 LSTM/GRU/Dense lay-
ers.

Modeling Sequences

For the first layer of the RNN the input shape needs to be specified. This shape
is represented by a tuple consisting of the number of timesteps, i.e. the number of
frames of the input sequence, and the dimensionality of each timestep. The sequences
the recurrent network trains on should be the same as how they will be perceived in
practice. The number of timesteps depends thus on the CNN, as they work at different
frame rates, and the window size. The frame rates at which the CNNs work were
investigated in Table 5.2. As the runtime of the RNNs is expected to be insignificant
compared to the runtime of the object detection component, the frame rates were
simply floored, resulting in 6 fps for both SSD models, 4 fps for the R-FCN model and
faster rcnn resnet101 and 2 fps for faster rcnn inception resnet. Which out of the 11
frames have been used to model the sequences is shown in Table 5.4. The sequences
are made up of the current frame and the 10 previous frames.

62

5.3. The Temporal Component

Ft−10 Ft−9 Ft−8 Ft−7 Ft−6 Ft−5 Ft−4 Ft−3 Ft−2 Ft−1 Ft

6 fps models X X X X X X X
4 fps models X X X X X
2 fps models X X X

Table 5.4: Depiction of which frames from the time window are used for the different
CNNs.

5.3.2 Training the Networks

Same as for the CNNs, the RNNs are trained on a Nvidia DGX-1. Before training
the temporal component another evaluation of the convnets was conducted in order to
verify that these are also able to achieve an accuracy of at least 50% on the EgoBaxter
RNN data. For this purpose 320 frames from the RNN part of EgoBaxter were used
as testing data. The CNNs were then trained on the whole CNN data, not on single
personsplits. The outcomes of these tests are presented in Chapter 6.

After verifying that the convnets are suitable, the training data for the RNNs is
created where the inputs consist of the outputs of the CNNs. As the same inputs are
used for multiple epochs and do not change over the course of them, it was decided to
write the outputs of the CNNs to disk in order to prevent the computation of the object
detection component from becoming the bottleneck of the RNN training. Analogous
to the labels of the recurrent networks, the inputs are written to a .txt file in a similar
format of filename : inputdata. For the temporal component there was no need to
transform the data into TFRecords, a simple parser for the input and label files already
achieves the required results. An input sequence, consisting of the current frame and
the 10 previous ones, is mapped to the label of the current frame.

Boxes

The bounding boxes output by the object detection component are the input to the
RNNs. Each box consists of its four coordinates xmin, ymin, xmax and ymax, a confi-
dence score and a class label. The spatial component always outputs exactly 100 boxes.
Most of these have a very low confidence score as there are at most 3 objects of interest
on one frame for EgoBaxter. An example can be seen in Figure 5.7, only the boxes
where the confidence score is higher than 0.5 are displayed.

As it might be misleading for the network to input all 100 boxes, it was decided to only
input one box for each object class. Specifically, the box with the highest confidence
score over 0.5 for each class. If no such box is present, e.g. because the object is not
visible or it is simply not detected accurately enough, the values for this box are set
to 0. The input for the RNNs results thus in 18 values, 6 for each of the three boxes.
These are further ordered by class, i.e. the first 6 values are represent the left hand,
the next 6 the right hand and the last 6 the tool.

Training Settings

The networks are trained and evaluated on all the subsequences of length 11 from a
scene. For example, if a scene is made up of 20 frames then a RNN using the outputs of
a faster rcnn inception resnet convnet trains on 10 subsequences of 3 frames (as only

63

5.3. The Temporal Component

Figure 5.7: Example of bounding boxes on EgoBaxter. 100 boxes are output, but only
those with a confidence score higher than 0.5 are displayed.

3 out of the 11 frames are used for faster rcnn inception resnet, see Table 5.4). The
dense networks are trained and evaluated on the outputs of single frames instead of
sequences, and would thus train on all 20 frames from the example above.

As the recurrent networks are built from scratch they are initialized with random
weights. Multiple instances of the same network trained on the same data with the
same settings could produce different outcomes. Thus, it was decided to train several
networks with the same settings to get a clearer idea of how they perform. Specifically,
5 networks are trained for each setting and they are then averaged over their accuracies.
Training several networks with the same settings was not performed for the convnets for
two reasons. First, they are not initialized with random weights but use a set of weights
aquired from transfer learning. Second, even though the Nvidia DGX-1 allowed for a
relatively fast training, it still took a considerable amount of time to train the CNNs
using the different settings only once.

As for the convnets, leave-one-out cross-validation on the individuals is performed on
the RNN data. In this case, in a non-exhaustive way, as 8 personsplits would take too
much time. Thus, only 3 splits of different individuals were used. Again, analogously
to the CNNs, hyperparameters like the number of units and the number of epochs are
first identified on one personsplit. Afterwards, the networks are trained and evaluated
on the remaining personsplits to get an idea of how well they perform in general.

5.3.3 Evaluating the Networks

The evaluation is again run in parallel with the training in order to measure the perfor-
mance at different stages of the training process. However, there is no need to run two
different scripts in Keras. It is sufficient to simlply call the fit function of the model:

1 tbCallBack = keras . c a l l b a c k s . TensorBoard (l o g d i r=’ model log ’)
2 model . f i t (x=tra in x , y=tra in y , b a t c h s i z e=batch s i z e ,
3 epochs = num epochs , c a l l b a c k s =[tbCallBack] ,
4 v a l i d a t i o n d a t a =(te s t x , t e s t y))

64

5.3. The Temporal Component

5 model . save (’ model . h5 ’)

The TensorBoard callback writes an event file which logs the training loss, training
accuracy, testing loss and testing accuracy to the folder specified by log_dir. As this
is a classification problem the accuracy is simply measured by whether the correct
label has been assigned to an input. The model itself is saved to the file specified by
model.save() and can be reused with a simple model = load_model() command. A
flowchart of the temporal component can be found in Figure 5.8.

Figure 5.8: Flowchart of the temporal component. Unlike for the spatial component,
everything can be done in one file in Keras.

From the results of this evaluation, which is representing the evaluation of the whole
sequential architecture, not only the performance on EgoBaxter can be deduced, but
also the SpatioTemporal Tradeoff can be determined. These results and the tradeoff
are presented in the next chapter.

65

6 Evaluation

This chapter starts by giving an introduction to TensorBoard, a tool by TensorFlow to
visualize different metrics, which was used in this thesis. Next, the evaluations of the
spatial and temporal components are presented, before the SpatioTemporal Tradeoff on
EgoBaxter is determined.

6.1 TensorBoard - A Visualization Tool

To make it easier to understand and optimize deep neural networks with TensorFlow,
a visualization tool called TensorBoard is provided. This tool can display several met-
rics like the training loss or the testing accuracy, example images which are evaluated
throughout the training process, or even a graph of the neural network model. Tensor-
Board can simply be called with:

tensorboard --logdir=dir_to_eventfile

where logdir points to the directory where the event files, which are produced during
the training and evaluation processes, are located.

Loss and Accuracy

The two main metrics which are used to determine the performance of a network are
the loss and the accuracy. The loss is usually inverse proportional to the accuracy,
meaning that if the loss decreases the accuracy typically increases. An example can be
seen in Figure 6.1. Both of these metrics can be measured for the training data as well
as for the testing data.

The goal of the training is to adjust the weights of the network in order to minimize
the training loss. The training accuracy is unsuited to determine how well the network
performs in general as the model might have overfit on the training data, i.e. it has a very
high accuracy on the training data, but performs badly on any other data (Section 4.3).
For this purpose the network is frequently evaluated on a testing set. This data has no
influence on the training, its sole purpose is to evaluate the network on new, unseen
data in order to get an idea of how well it can perform in general. The testing accuracy
can typically be used to represent the performance of a network. The TensorBoard
interface displaying the 4 metrics of training loss, training accuracy, testing loss and
testing accuracy can be seen in Figure 6.2.

On the left hand side of the interface the smoothing, which uses a simple moving
average, of the curve can be controlled. The bigger the weight, the bigger the size of
the moving average window. Smoothing allows to easier detect the general behaviour,

67

6.1. TensorBoard - A Visualization Tool

(a) Training Loss

(b) Training Accuracy

Figure 6.1: Example of how the loss and accuracy typically progress throughout the
training.

Figure 6.2: The interface of TensorBoard displaying the training loss (upper right
graph), training accuracy (upper left), testing loss (bottom right) and test-
ing accuracy (bottom left).

68

6.1. TensorBoard - A Visualization Tool

e.g. if a curve is decreasing or increasing, and is more robust to outliers. Smoothing
with different weights can be seen in Figure 6.3.

(a) 0.0 (b) 0.3

(c) 0.6 (d) 0.8

(e) 0.95

Figure 6.3: Smoothing with different weights.

Example Visualizations

TensorBoard can also be used to visualize how the network performs at different steps
of the training on example images from the test set. This feature was used during the
training and evaluation of the CNNs as it helped to detect strengths and weaknesses
of the network. An example can be seen in Figure 6.4. One can see how the convnet
learns to detect the different object classes over the course of its training.

For the RNNs this feature could not be enabled as there are no images to visualize;
the networks only train on the outputs of the CNNs and not the images themselves.

Graphs

TensorBoard also has a feature to display the model structure of the underlying network
as a graph. This can be useful to understand the data flow, especially for the CNNs as
they are not built from scratch, but based on existing architectures. Furthermore, the
inputs and outputs of each node are displayed. This could be useful if one would for

69

6.2. Evaluation of the Spatial Component

(a) Step 760 (b) Step 10146

(c) Step 15000

Figure 6.4: Visualization of an example image from the testing set at different steps.

example like to know which features are used to make the predictions of a box. A part
of such a graph can be seen in Figure 6.5.

6.2 Evaluation of the Spatial Component

The evaluation of the object detection component is based on the Pascal VOC detection
metric [19] (see Section 4.3). For the CNNs, TensorBoard was used to log the training
loss, the testing accuracy (mAP), and to display example visualizations on new data.
The individual APs of the three object classes were also logged.

Hyperparameter - Number of Steps

As described in Section 5.2.1, it was decided to keep as many parameters as possible
fixed, since the training of a CNN takes a considerable amount of time. The number
of steps, which defines how long the training process lasts, depends a lot on the size of
the dataset and needs to be identified empirically.

This value was identified by running the network for a high amount of steps and simply
checking at which point of the training the testing accuracy converges, or, if the network
overfits, checking at which point the accuracy reaches a peak before dropping. An
example can be seen in Figure 6.6. The number of steps was identified on personsplit1
and was adopted for the other personsplits. The values for the different models can be
found in Table 6.1.

70

6.2. Evaluation of the Spatial Component

Figure 6.5: Part of the graph from the faster rcnn inception resnet model.

Figure 6.6: An example of how to identify the number of steps by checking when the
model converges, respectively reaches its peak before overfitting. In this
example, one can see a small drop in performance after the points of con-
vergence. This might indicate overfitting, but could as well just be a small
fluctuation as the decrease in performance is very small.

Modelname Number of Steps
ssd mobilenet 50k
ssd inception 60k
rfcn resnet101 30k
faster rcnn resnet101 40k
faster rcnn inception resnet 15k

Table 6.1: The number of steps which was identified for the different models.

71

6.2. Evaluation of the Spatial Component

Performance of the Spatial Component

The performance of the spatial component can be deduced from the mAP metric, the
higher the better. Furthermore, exhaustive leave-one-out cross-validation was applied in
order to get a better general idea on how the models perform. The mAP of the different
models on the 5 personsplits can be found in Table 6.2. The mAP averaged across the
personsplits can be found in Table 6.3. The latter table essentially summarizes the
evaluation of the spatial component

Modelname Split1 Split2 Split3 Split4 Split5
ssd mobilenet 0.7039 0.3302 0.6264 0.7644 0.7971
ssd inception 0.7070 0.3408 0.5865 0.7115 0.8130
rfcn resnet101 0.8258 0.6253 0.8247 0.9120 0.9078
faster rcnn resnet101 0.7975 0.5569 0.8234 0.9181 0.8919
faster rcnn inception resnet 0.7514 0.5517 0.6972 0.8126 0.8200

Table 6.2: The mAPs of the different models on all the personsplits.

Modelname Total mAP
ssd mobilenet 0.6444
ssd inception 0.6318
rfcn resnet101 0.8191
faster rcnn resnet101 0.7976
faster rcnn inception resnet 0.7266

Table 6.3: The mAPs of the different models averaged over all the personsplits.

From these tables a few observations can be made:

1. All the networks achieved the desired performance of over 50%, which means that
their outputs can be used for the temporal component.

2. A similar ranking to the one in Table 4.2 was expected, however rfcn resnet101
and faster rcnn resnet101 notably outperform faster rcnn inception resnet, which
was supposed to be the strongest model. Also rfcn resnet101 performs better
than faster rcnn resnet101 and ssd mobilenet performs better than ssd inception.
However, the differences between these models are marginal (1-2%) in comparison.
One reason for the different outcomes might be that distinct evaluation protocols
were used. Table 4.2 uses the MS COCO detection metric, whereas Table 6.2 and
Table 6.3 use the Pascal VOC detection metric. In the MS COCO evaluation,
the APs are averaged over multiple IoU thresholds in the range of [0.5:0.05:0.95].
The high IoU values are rewarding for models which are very exact in their local-
ization.
Furthermore, for most of the parameters the networks adopted the default val-
ues which were already set in the config files. For EgoBaxter other values might
achieve better results. However, due to the fact that the training takes a long
amount of time, only the given subset of settings were used. The ranking from

72

6.2. Evaluation of the Spatial Component

Table 6.3 hints that rfcn resnet101 and faster rcnn resnet101 will most probably
perform better than faster rcnn inception resnet in combination with the tempo-
ral component, as they both have the higher spatial accuracy as well as the higher
processing speed.

3. All the models have a significant drop in performance on personsplit2. After
further investigating this matter, it was observed that the networks performed
relatively poor on both hands, especially the SSD models, as can be seen in
Table 6.4. The individual, on which the networks were tested, was wearing short
sleeves, whereas all of the participants from the training set were wearing long
sleeves. The models could not cope well which this kind of new data and some of
them even showed signs of overfitting. The problems that occured are visualized
in Figure 6.7.

Modelname Left Hand Right Hand Tool
ssd mobilenet 0.2305 0.1050 0.6550
ssd inception 0.2336 0.1062 0.6826
rfcn resnet101 0.5049 0.5527 0.8183
faster rcnn resnet101 0.4951 0.4266 0.7490
faster rcnn inception resnet 0.5886 0.4898 0.5767

Table 6.4: The APs of the three categories on personsplit2.

When taking a look at the example visualizations, further difficulties in detection
seem to come from small object instances and motion blur (Figure 6.8). The latter
causing difficulties is further supported by Dodge and Karam [16]. They state in their
work that CNNs are susceptible to quality distortions in images, particularly to blur and
noise. Small object instances were mainly an issue in the scenes were the human agent
was not performing a handover, as the individual was occasionally standing further
away from Baxter in these scenes than in the handover scenes.

Performance on the different Categories

More observations could be made when taking a look at the AP for the three different
object classes. The values for personsplit1 and personsplit3 are shown in Table 6.5,
similar findings could be observed for personsplit4 and 5.

1. Concerning the hands, the left hand is getting detected better than the right hand.
This might be due to the fact that the individuals were recorded from their left
hand side. The left hand is thus better visible and larger than the right hand
in most of the frames. Further, taking a look at the example visualizations, all
the networks perform well in distinguishing both hands, although there are some
occasional mix-ups.

2. The left hand is detected the most accurately out of the three categories. The
right hand and tool often have similar performances, e.g. the right hand has the
higher AP on personsplit1 for most of the models, whereas the tool has the higher
value on personsplit3.

73

6.2. Evaluation of the Spatial Component

(a) Detecting the forearm as the tool, as
both are slim, longish and unicolor.

(b) Including the whole forearm in the
bounding box of the hand.

(c) Detecting the same hand several times.

Figure 6.7: Problems which occured on personsplit2.

(a) Small instances of both hands. (b) Motion Blur.

Figure 6.8: Some cases where the networks have difficulties in detecting the object in-
stances.

74

6.2. Evaluation of the Spatial Component

3. The faster rcnn inception resnet model struggles with detecting the tool. Except
for personsplit5, this model always has the lowest AP value for the tool out of all
the models. This is rather surprising as it outperforms the SSD models when it
comes to detecting the hands, and even achieves results close to rfcn resnet101 and
faster rcnn resnet101 on some splits. If not for the tool, the gap in performance
to the latter two models might have been a lot smaller. A reason as to why this
is the case was not found.

Split Modelname Left Hand Right Hand Tool
Personsplit1 ssd mobilenet 0.8335 0.6803 0.5979

ssd inception 0.7912 0.6864 0.6435
rfcn resnet101 0.9015 0.8564 0.7196
faster rcnn resnet101 0.8902 0.8181 0.6841
faster rcnn inception resnet 0.8814 0.7990 0.5500

Personsplit3 ssd mobilenet 0.7218 0.5386 0.6188
ssd inception 0.7401 0.4674 0.5517
rfcn resnet101 0.8855 0.7514 0.8373
faster rcnn resnet101 0.8981 0.7610 0.8111
faster rcnn inception resnet 0.8197 0.7335 0.5382

Table 6.5: The APs of the three categories on personsplit1 and personsplit3. Similar
results could be observed for personsplit4 and 5.

Additional Experiments

Additional tests using more training data were conducted on personsplit1. Similar re-
sults are expected for the other personsplits, the explicit training runs were however
omitted due to the time it would take to train all the networks. The additional train-
ing data consists of HandsTools and EgoHands (see Table 5.1) and was used in three
different setups: 1) training on HandsTools and personsplit1, 2) training on EgoHands,
HandsTools and personsplit1, 3) first training the model on EgoHands and then on
HandsTools and personsplit1. The number of steps was increased accordingly to cope
with the larger amount of data. For the third setup, the networks were first trained
and evaluated on EgoHands, which was split into a training set of 4400 frames and a
testing set of 400 frames. All of the models achieved a mAP of ∼ 0.95 on EgoHands,
and were then trained on the personsplit and HandsTools. For the second setup, all of
the 4800 frames of EgoHands were included in the training. The evaluation results can
be seen in Table 6.6.

The ssd mobilenet performs best when using the additional data of HandsTools to
train on. For faster rcnn inception resnet adding EgoHands and HandsTools allowed
for an improved performance. The other three models performed best without any
additional data. In some of these cases, using additional data achieves close results
(see rfcn resnet101 split1 and setup1), in others the performance dropped notably (see
ssd inception split1 and setup3). None of the models performed best when training on
EgoHands first and then on HandsTools and the personsplit. A definite conclusion in

75

6.2. Evaluation of the Spatial Component

Modelname Split1 Setup1 Setup2 Setup3
ssd mobilenet 0.7039 0.7254 0.7197 0.7176
ssd inception 0.7070 0.6932 0.6918 0.6723
rfcn resnet101 0.8258 0.8221 0.7989 0.8078
faster rcnn resnet101 0.7975 0.7780 0.7538 0.7727
faster rcnn inception resnet 0.7514 0.7747 0.7858 0.7723

Table 6.6: The mAPs of the different models for the additional experiments.

the way of ”the models need to train on this data to perform best” cannot be made.
The cause behind these differences in performance has not been investigated.

Final Models

After confirming through cross-validation that the networks have a sufficient accuracy
on EgoBaxter, the final models, whose outputs are used as the inputs for the RNNs,
are trained. The training set for these models consists of all the scenes, i.e. using all
of the EgoBaxer CNN data without splits. As no clear conclusion could be made from
Table 6.6, setup1 and setup2 were also run. The models were evaluated on a subset of
frames from EgoBaxter RNN, to confirm that the models also work well on this new
data. In order to use these as evaluation data, they need to be labeled with ground
truths. For this purpose, 320 frames, 2 from each of the 160 scenes, were labeled with
bounding boxes. As these scenes consist only of handovers, small object instances are
not an issue. Furthermore, it was avoided to choose frames with motion blur, which
was noted to be not as present in EgoBaxter RNN as it is in EgoBaxter CNN. The
results of the last training session can be seen in Table 6.7.

Modelname EgoBaxter CNN Setup1 Setup2
ssd mobilenet 0.8785 0.8654 0.8726
ssd inception 0.8638 0.8881 0.8544
rfcn resnet101 0.9069 0.9238 0.9088
faster rcnn resnet101 0.8963 0.8996 0.9096
faster rcnn inception resnet 0.8162 0.8941 0.9146

Table 6.7: The mAPs of the final models which were evaluated on frames from the RNN
dataset.

The numbers confirm that the models are suitable to provide input data to the RNNs.
Due to the reasons stated above, the CNNs were expected to perform better on this
data than on the one used in the cross-validation. The results from Table 6.3 give a
better general idea on how the networks perform on EgoBaxter.

A conclusion of which data works best for the networks cannot be deduced from
Table 6.7 either. The outcomes are even different than those from Table 6.6. Further
investigations on this matter were however not conducted as the CNNs achieve the
desired performance and can be used for the next step of training the temporal com-
ponent. As the final models, those with the highest performance from Table 6.7 were
chosen.

76

6.3. Evaluation of the Temporal Component

During the process of this thesis, over 60 CNNs have been trained and evaluated. The
training of the networks took between 2 and 12 hours per network, depending on the
network type and the amount of training data. Although there are a lot more different
settings, some of which could potentially achieve better results, for this thesis, only
the described subset of values for the parameters were used. Training more networks
with different settings would take up a lot of time, and the models already reached the
desired performance to be of use for the temporal component. Thus, it was decided to
move on to the next step.

It should also be noted that even though the networks did not overfit, they can
probably not be used for other datasets. This is due to the fact that they were trained
and evaluated on EgoBaxter, which is a relatively small and limited dataset, e.g. as
all the scenes were recorded at the same place. This also explains the relatively high
accuracies. If general models were desired, a bigger dataset with a lot more variety in
data would be required. However, the goal of this thesis is to provide a way on how
to determine the SpatioTemporal Tradeoff and then demonstrate it on the example of
EgoBaxter. Creating a huge dataset of several hundred-thousand images and building
perfect object detection models for them is simply not needed for this thesis.

6.3 Evaluation of the Temporal Component

The evaluation of this component also represents the evaluation of the complete se-
quential architecture. The metrics which were logged for the temporal component are
the training loss, training accuracy, testing loss and the testing accuracy. The accuracy
is simply measured by the number of correctly classified subsequences divided by the
number of all subsequences.

Hyperparameters

In a first step, the hyperparameters for the recurrent/dense networks need to be identi-
fied. These include the number of epochs, the number of layers and the number of units
per layer. These paremeters are first determined on personsplit1, and are then adopted
for the remaining two splits. For each of the following described settings, 5 networks
were trained and the presented accuracies represent the average of these 5 runs.

First Iteration

For the very first iteration, the different parameters needed to be set to arbitrary values.
The number of cells for the dense network was set to 2048, as it is a common number for
fully-connected layers in CNNs, for the GRU and LSTM it was set to 32. The dropout
rate was set to 0.2 (same as for the CNN), the number of layers to 2 and the networks
were run for 1000 epochs.

During the first iteration, both the GRU and LSTM overfitted as can be seen in
the example of Figure 6.9. The number of epochs was thus reduced to 100. The dense
networks had high fluctuations in the testing loss and accuracy, however they showed no
signs of overfitting. The fluctuations might be due to the high amount of units, which
were reduced to 32 in the following test. The dropout rate was also increased to 0.4 in

77

6.3. Evaluation of the Temporal Component

all the following tests to prevent the overfitting and also reduce the high fluctuations
in the dense networks.

Number of Epochs

For the number of epochs, the tested values differed from the dense network and the
recurrent networks. For the dense network, values of 100 and 1000 were investigated,
whereas for the recurrent networks values of 40 and 100 were tested. Some of the
GRUs/LSTMs showed light signs of overfitting when using 100 epochs. Thus, the
smaller value of 40 was further tested.

For the dense networks, 1000 epochs proved to be the better choice than 100 as can
be seen in Table 6.8. Analogous results were observed for the recurrent networks where
100 turned out to be the better value.

Input from #Units Epochs Accuracy
ssd mobilenet 32 100 0.8998

1000 0.9106
16 100 0.8989

1000 0.9061
faster rcnn inception resnet 32 100 0.8924

1000 0.9315
16 100 0.9119

1000 0.9349

Table 6.8: Comparison of the number of epochs for the dense networks. The number of
layers was fixed to 2 for these tests.

Figure 6.9: Testing accuracy (left) and testing loss (right) of an overfit LSTM from the
first iteration. A high drop in the testing accuracy and a high increase in
the testing loss are clearly visible. A smoothing weight of 0.9 was used.

78

6.3. Evaluation of the Temporal Component

Number of Layers

All the networks were tested with either 1 or 2 layers. The results are similar for the
three types of networks: the accuracies between using 1 or 2 layers are close, but using
2 layers generally achieves the better results, as can be seen in Table 6.9.

Network Type #Units #Layers Accuracy
Dense 32 1 0.9054

2 0.9106
16 1 0.9002

2 0.9061
GRU 32 1 0.8866

2 0.8929
16 1 0.8863

2 0.8961
LSTM 32 1 0.8898

2 0.8956
16 1 0.8909

2 0.8816

Table 6.9: Comparison of the number of layers for the different types of networks. The
number of epochs was fixed to 1000 for the dense and 100 for the recurrent
networks. The inputs are from the ssd mobilenet model.

Number of Cells

For the number of cells values of 16 and 32 were investigated. If the network had two
layers then the number of cells was set to be the same in both of them. Some results
can already be deduced from the comparison of the number of layers (Table 6.9), more
explicit results can be found in Table 6.10. The number of cells does not have much
influence on the outcomes as the accuracies are very close for both values (usually less
than 0.5% difference).

Network Type #Layers #Units Accuracy
Dense 1 16 0.9299

32 0.9312
2 16 0.9349

32 0.9315
GRU 1 16 0.9171

32 0.9201
LSTM 1 16 0.9128

32 0.9162

Table 6.10: Comparison of the number of cells for the different types of networks. The
number of epochs was fixed to 1000 for the dense and 100 for the recurrent
networks. The inputs are from the faster rcnn inception resnet model.

79

6.3. Evaluation of the Temporal Component

Final Settings

The final settings which were used on the different personsplits are summarized in Ta-
ble 6.11. Analogously to the spatial component, more different settings for the different
parameters could have been tested, some of which could potentially lead to better re-
sults. However, due to reasons of time, only the described subset of settings was used.
For the temporal component, a total of around 400 networks have been trained and
evaluated. Even though they do not need to train as long as the CNNs (training one
network took at most 1h), the training and evaluation took a fair amount of time.

Network Type #Epochs #Layers #Units
Dense 1000 2 32
GRU 100 2 32
LSTM 100 2 32

Table 6.11: Final settings of the networks which were used on the different personsplits
to measure the performance of the temporal component.

Performance of the Temporal Component

The final results of the temporal component, and thus also the whole sequential archi-
tecture, can be found in Table 6.12 and Table 6.13. In the former the results across the
three personsplits are shown, and in the latter the averages, which represent a summary
of the whole evaluation, are displayed.

Network Type Input from Split1 Split2 Split3

Dense ssd mobilenet 0.9106 0.8199 0.8672
ssd inception 0.9108 0.7873 0.8678
rfcn resnet101 0.9404 0.8320 0.8893
faster rcnn resnet101 0.9468 0.8155 0.8876
faster rcnn inception resnet 0.9315 0.8218 0.9083

GRU ssd mobilenet 0.8929 0.7744 0.8672
ssd inception 0.8982 0.7586 0.8725
rfcn resnet101 0.9246 0.7973 0.8945
faster rcnn resnet101 0.9337 0.8059 0.8890
faster rcnn inception resnet 0.9271 0.7938 0.8811

LSTM ssd mobilenet 0.8956 0.7925 0.8357
ssd inception 0.8909 0.7650 0.8934
rfcn resnet101 0.9317 0.8027 0.8945
faster rcnn resnet101 0.9250 0.7494 0.9067
faster rcnn inception resnet 0.9219 0.7876 0.9095

Table 6.12: Accuracies of the different network types across the personsplits.

80

6.3. Evaluation of the Temporal Component

Network Type Input from Total Accuracy

Dense ssd mobilenet 0.8659
ssd inception 0.8553
rfcn resnet101 0.8872
faster rcnn resnet101 0.8833
faster rcnn inception resnet 0.8872

GRU ssd mobilenet 0.8448
ssd inception 0.8431
rfcn resnet101 0.8721
faster rcnn resnet101 0.8762
faster rcnn inception resnet 0.8673

LSTM ssd mobilenet 0.8413
ssd inception 0.8498
rfcn resnet101 0.8763
faster rcnn resnet101 0.8604
faster rcnn inception resnet 0.8730

Table 6.13: The averaged accuracies from the personsplits.

From these results, two major observations can be made:

1. Inputs from the rfcn resnet101 and faster rcnn resnet101 CNNs achieve the best
results, faster rcnn inception resnet achieves comparable results. Both the SSD
models perform notably worse. Thus, the models with the highest spatial accu-
racy achieved the best results. One should keep in mind though that both the
rfcn resnet101 and faster rcnn resnet101 CNNs are of medium speed. However,
the fact that the faster rcnn inception resnet of apparent intermediate spatial ac-
curacy, but with the lowest frame rate achieves comparable results leads to the
idea that spatial information is more important than temporal information. The
second observation further confirms this statement.

2. The dense networks performed better than the recurrent networks in all combi-
nations with the different CNNs. It is quite suprising that a network with no
memory, which works on information from single frames alone, performs better
than the RNNs which work on sequences. This further enhances the idea that spa-
tial information is more important, as from this information alone the activities
can be accurately classified.

The total accuracies are remarkably high, considering that the inputs of the networks
only consisted of the bounding boxes output by the CNNs (Figure 6.10). A simple
classification rule such as, label an action as Give if the tool was present and as Request
if it was absent is not enough, given the fact that in 57.75% of the frames no action took
place, i.e. Dummy. The networks probably learned that the hand and tool bounding
boxes need to be overlapping for a Give action, or that when a box of a hand is becoming
bigger and moving towards the center it strongly signalizes the Request action.

Concerning both recurrent networks, there is no clear conclusion which of both per-
forms better. For some settings the LSTM worked better, for others the GRU.

81

6.3. Evaluation of the Temporal Component

(a) Actual image. (b) Actual image with boxes.

(c) What the network receives: only the
boxes.

Figure 6.10: Visualization of which information from an image is passed to the recur-
rent/dense networks.

82

6.4. The SpatioTemporal Tradeoff

6.4 The SpatioTemporal Tradeoff

Based on the evaluation of the temporal component, which represents the evaluation
of the complete sequential architecture, it is more important to focus on the single
frames than on the temporal evolution of these. Thus, concerning the SpatioTemporal
Tradeoff between the spatial and temporal dimension, reducing the temporal resolution
for the sake of increased spatial accuracy achieves the better results. The tradeoff was
determined for the EgoBaxter dataset in this thesis, in order to be able to make a more
general conclusion the SpatioTemporal Tradeoff would need to be investigated on more
different datasets.

83

7 Conclusion

In this thesis, a guideline on how to determine the SpatioTemporal Tradeoff has been
provided. This process has then been elaborated on the newly created EgoBaxter
dataset. For this purpose, more than 10,000 frames have been recorded and labeled with
bounding boxes or action labels. The first component of the sequential architecture used
in this thesis consists of CNNs with object detection. Five different network models
with diverse accuracies and speeds have been trained and evaluated. The outputs of the
CNNs are then input into the second component of the architecture: a RNN. For this
component LSTMs and GRUs as well as dense networks with no memory have been
investigated in combination with the different CNNs. Over the course of this thesis a
total of more than 450 networks have been trained and evaluated.

The results from the evaluation indicate that focusing on the spatial information leads
to the better overall performance. Thus, for EgoBaxter, the SpatioTemporal Tradeoff
favors the spatial dimension. Although, in order to make a general statement on the
SpatioTemporal Tradeoff for HAR scenarios, the tradeoff would need to be investigated
on further datasets.

85

8 Future Work

The goal of this thesis was to provide a guideline on how to determine the SpatioTem-
poral Tradeoff and demonstrate it on the example of EgoBaxter. It would be interesting
to explore this tradeoff on other datasets in order to be able to make a more general
statement on the SpatioTemporal Tradeoff. Furthermore, in this thesis, only informa-
tion about the bounding boxes has been used as input to the recurrent/dense networks.
Using other kinds of input, e.g. features, would also be interesting to use.

Considering other models or approaches for the spatial and temporal component
would also be worth investigating. For example, using CNNs with the You Only Look
Once (YOLO) [66] object detection algorithm, especially since YOLO v3 [67] is appar-
ently faster and more accurate than SSD. Using CNNs without object detection would
also be an option, as there are HAR scenarios for which it is not needed.

Furthermore, information on the pose of the human agent could be used as additional
spatial information. Recent approaches can even extract such information from RGB
frames [64] [69] in weak real-time, so there would be no need for a depth camera on the
robot.

Advances in hardware, especially GPU, will also allow to extract spatial information
at higher frame rates.

87

Acknowledgements

I would like to thank Prof. Dr. Wahlster and the DFKI GmbH for the opportunity
to write this thesis and for providing the required hardware and resources. I would
also like to thank my colleagues from DFKI and my friends for all kinds of support
throughout this thesis. Next, I would like to give my sincere thanks to my supervisor
Christian Bürckert for guiding, supporting and encouraging me throughout this work.
Finally, I would like to thank my father for supporting me.

Saarbrücken, 18th July 2018

Frank Baustert

89

List of Acronyms

ANN Artificial Neural Network

AP Average Precision

BRNN Bidirectional Recurrent Neural Network

CNN Convolutional Neural Network

DBN Deep Belief Network

FCN Fully Convolutional Network

GRU Gated Recurrent Unit

HAR Human Activity Recognition

HRC Human Robot Collaboration

IoU Intersection over Union

LSTM Long Short-Term Memory

mAP Mean Average Precision

MLP MultiLayer Perceptron

R-CNN Region-based Convolutional Neural Network

ReLU Rectified Linear Unit

R-FCN Region-based Fully Convolutional Network

RNN Recurrent Neural Network

RoI Region of Interest

RPN Region Proposal Network

SSD Single Shot MultiBox Detector

SVM Support Vector Machine

YOLO You Only Look Once

91

Bibliography

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-
enberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow.org.

[2] Moez Baccouche, Franck Mamalet, Christian Wolf, Christophe Garcia, and Atilla
Baskurt. Action classification in soccer videos with long short-term memory re-
current neural networks. In Proceedings of the 20th International Conference on
Artificial Neural Networks: Part II, ICANN’10, pages 154–159, Berlin, Heidel-
berg, 2010. Springer-Verlag.

[3] Moez Baccouche, Franck Mamalet, Christian Wolf, Christophe Garcia, and Atilla
Baskurt. Sequential deep learning for human action recognition. In Proceedings of
the Second International Conference on Human Behavior Unterstanding, HBU’11,
pages 29–39, Berlin, Heidelberg, 2011. Springer-Verlag.

[4] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convo-
lutional encoder-decoder architecture for image segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2017.

[5] Sven Bambach, Stefan Lee, David Crandall, and Chen Yu. Lending a hand:
Detecting hands and recognizing activities in complex egocentric interactions. In
IEEE International Conference on Computer Vision (ICCV), 2015.

[6] Fabien Baradel, Christian Wolf, and Julien Mille. Pose-conditioned spatio-
temporal attention for human action recognition. CoRR, abs/1703.10106, 2017.

[7] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with
gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–
166, Mar 1994.

[8] C. Braunagel, E. Kasneci, W. Stolzmann, and W. Rosenstiel. Driver-activity
recognition in the context of conditionally autonomous driving. In 2015 IEEE 18th
International Conference on Intelligent Transportation Systems, pages 1652–1657,
Sept 2015.

93

[9] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow
estimation based on a theory for warping. In European Conference on Computer
Vision (ECCV), volume 3024 of Lecture Notes in Computer Science, pages 25–36.
Springer, May 2004.

[10] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil
in the details: Delving deep into convolutional nets. In British Machine Vision
Conference, 2014.

[11] KyungHyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio.
On the properties of neural machine translation: Encoder-decoder approaches.
CoRR, abs/1409.1259, 2014.

[12] François Chollet et al. Keras. https://keras.io, 2015.

[13] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. Empir-
ical evaluation of gated recurrent neural networks on sequence modeling. CoRR,
abs/1412.3555, 2014.

[14] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Mach. Learn.,
20(3):273–297, September 1995.

[15] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-FCN: object detection via region-
based fully convolutional networks. CoRR, abs/1605.06409, 2016.

[16] S. Dodge and L. Karam. Understanding how image quality affects deep neural
networks. In 2016 Eighth International Conference on Quality of Multimedia
Experience (QoMEX), pages 1–6, June 2016.

[17] Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Sub-
hashini Venugopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent
convolutional networks for visual recognition and description. In CVPR, 2015.

[18] Yong Du, Wei Wang, and Liang Wang. Hierarchical recurrent neural network for
skeleton based action recognition. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2015.

[19] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
pascal visual object classes (voc) challenge. International Journal of Computer
Vision, 88(2):303–338, June 2010.

[20] Bernard Ghanem Fabian Caba Heilbron, Victor Escorcia and Juan Carlos Niebles.
Activitynet: A large-scale video benchmark for human activity understand-
ing. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 961–970, 2015.

[21] A. Fathi, X. Ren, and J. M. Rehg. Learning to recognize objects in egocentric
activities. In CVPR 2011, pages 3281–3288, June 2011.

https://keras.io

[22] Alireza Fathi, Yin Li, and James M. Rehg. Learning to recognize daily actions
using gaze. In Andrew Fitzgibbon, Svetlana Lazebnik, Pietro Perona, Yoichi Sato,
and Cordelia Schmid, editors, Computer Vision – ECCV 2012, pages 314–327,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[23] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object
detection with discriminatively trained part-based models. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 32(9):1627–1645, Sept 2010.

[24] H. Foroughi, A. Naseri, A. Saberi, and H. Sadoghi Yazdi. An eigenspace-based
approach for human fall detection using integrated time motion image and neural
network. In 2008 9th International Conference on Signal Processing, pages 1499–
1503, Oct 2008.

[25] Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for
a mechanism of pattern recognition unaffected by shift in position. Biological
Cybernetics, 36:193–202, 1980.

[26] Felix A. Gers, Jürgen A. Schmidhuber, and Fred A. Cummins. Learning to for-
get: Continual prediction with lstm. Neural Comput., 12(10):2451–2471, October
2000.

[27] Ross Girshick. Fast r-cnn. In Proceedings of the 2015 IEEE International
Conference on Computer Vision (ICCV), ICCV ’15, pages 1440–1448, Washing-
ton, DC, USA, 2015. IEEE Computer Society.

[28] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hi-
erarchies for accurate object detection and semantic segmentation. In Proceedings
of the 2014 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR ’14, pages 580–587, Washington, DC, USA, 2014. IEEE Computer So-
ciety.

[29] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neu-
ral networks. In Geoffrey Gordon, David Dunson, and Miroslav Dud́ık, editors,
Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics, volume 15 of Proceedings of Machine Learning Research, pages
315–323, Fort Lauderdale, FL, USA, 11–13 Apr 2011. PMLR.

[30] Melvyn A. Goodale and A. David. Milner. Separate visual pathways for perception
and action. Trends in Neurosciences, 15(1):20–25, 1992.

[31] A. Gupta, A. Kembhavi, and L. S. Davis. Observing human-object interactions:
Using spatial and functional compatibility for recognition. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 31(10):1775–1789, Oct 2009.

[32] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, June 2016.

[33] Donald O. Hebb. The organization of behavior: A neuropsychological theory.
Wiley, New York, June 1949.

[34] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algo-
rithm for deep belief nets. Neural Comput., 18(7):1527–1554, July 2006.

[35] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Comput., 9(8):1735–1780, November 1997.

[36] J. J. Hopfield. Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of Sciences of the
United States of America, 79(8):2554–2558, April 1982.

[37] J. Hosang, R. Benenson, and B. Schiele. Learning non-maximum suppression. In
CVPR, 2017.

[38] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. CoRR,
abs/1704.04861, 2017.

[39] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara,
Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama,
and Kevin Murphy. Speed/accuracy trade-offs for modern convolutional object
detectors. CoRR, abs/1611.10012, 2016.

[40] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. In Proceedings of the 32Nd
International Conference on International Conference on Machine Learning -
Volume 37, ICML’15, pages 448–456. JMLR.org, 2015.

[41] H. Jhuang, T. Serre, L. Wolf, and T. Poggio. A biologically inspired system
for action recognition. In International Conference on Computer Vision (ICCV),
2007.

[42] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolutional neural networks
for human action recognition. In Proceedings of the 27th International Conference
on International Conference on Machine Learning, ICML’10, pages 495–502, USA,
2010. Omnipress.

[43] Andrej Karpathy and Fei-Fei Li. Deep visual-semantic alignments for generating
image descriptions. In CVPR, pages 3128–3137. IEEE Computer Society, 2015.

[44] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-
thankar, and Li Fei-Fei. Large-scale video classification with convolutional neural
networks. In CVPR, 2014.

[45] Alex Kendall, Vijay Badrinarayanan, , and Roberto Cipolla. Bayesian segnet:
Model uncertainty in deep convolutional encoder-decoder architectures for scene
understanding. arXiv preprint arXiv:1511.02680, 2015.

[46] L. Kratz and K. Nishino. Tracking pedestrians using local spatio-temporal motion
patterns in extremely crowded scenes. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 34(5):987–1002, May 2012.

[47] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification
with deep convolutional neural networks. In Proceedings of the 25th International
Conference on Neural Information Processing Systems - Volume 1, NIPS’12, pages
1097–1105, USA, 2012. Curran Associates Inc.

[48] H. Kuhne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. Hmdb: A large video
database for human motion recognition. In IEEE International Conference on
Computer Vision (ICCV), 2011.

[49] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. In Proceedings of the IEEE, pages
2278–2324, 1998.

[50] J. Lee and M. S. Ryoo. Learning robot activities from first-person human videos
using convolutional future regression. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), pages 472–473, July 2017.

[51] W. Li, Z. Zhang, and Z. Liu. Action recognition based on a bag of 3d points.
In 2010 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition - Workshops, pages 9–14, June 2010.

[52] Y. Li, Zhefan Ye, and J. M. Rehg. Delving into egocentric actions. In 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
287–295, June 2015.

[53] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B.
Girshick, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft COCO: common objects in context. CoRR,
abs/1405.0312, 2014.

[54] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C. Berg. SSD: Single Shot MultiBox Detector,
pages 21–37. Springer International Publishing, Cham, 2016.

[55] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for seman-
tic segmentation. In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3431–3440, June 2015.

[56] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for seman-
tic segmentation. In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3431–3440, June 2015.

[57] M. Ma, H. Fan, and K. M. Kitani. Going deeper into first-person activity recog-
nition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1894–1903, June 2016.

[58] A. Manzi, L. Fiorini, R. Limosani, P. Dario, and F. Cavallo. Two-person activity
recognition using skeleton data. IET Computer Vision, 12(1):27–35, 2018.

[59] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent
in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, Dec
1943.

[60] M. Müller, T. Röder, M. Clausen, B. Eberhardt, B. Krüger, and A. Weber. Doc-
umentation mocap database hdm05. Technical Report CG-2007-2, Universität
Bonn, June 2007.

[61] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vijayanarasimhan, Oriol
Vinyals, Rajat Monga, and George Toderici. Beyond short snippets: Deep net-
works for video classification. In Computer Vision and Pattern Recognition, 2015.

[62] F. Ofli, R. Chaudhry, G. Kurillo, R. Vidal, and R. Bajcsy. Berkeley mhad: A
comprehensive multimodal human action database. In 2013 IEEE Workshop on
Applications of Computer Vision (WACV), pages 53–60, Jan 2013.

[63] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on
Knowledge and Data Engineering, 22(10):1345–1359, Oct 2010.

[64] Paschalis Panteleris, Iason Oikonomidis, and Antonis A Argyros. Using a single
rgb frame for real time 3d hand pose estimation in the wild. In IEEE Winter
Conference on Applications of Computer Vision (WACV 2018), also available at
arxiv., pages 436–445, lake Tahoe, NV, USA, March 2018. IEEE.

[65] Ning Qian. On the momentum term in gradient descent learning algorithms.
Neural Netw., 12(1):145–151, January 1999.

[66] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You
only look once: Unified, real-time object detection. CoRR, abs/1506.02640, 2015.

[67] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv,
2018.

[68] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: To-
wards real-time object detection with region proposal networks. In Proceedings
of the 28th International Conference on Neural Information Processing Systems -
Volume 1, NIPS’15, pages 91–99, Cambridge, MA, USA, 2015. MIT Press.

[69] Iasonas Kokkinos Rıza Alp Güler, Natalia Neverova. Densepose: Dense human
pose estimation in the wild. arXiv, 2018.

[70] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
representations by back-propagating errors. Nature, 323:533–, October 1986.

[71] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

[72] M. S. Ryoo and L. Matthies. First-person activity recognition: What are they
doing to me? In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Portland, OR, June 2013.

[73] Christian Schüldt, Ivan Laptev, and Barbara Caputo. Recognizing human actions:
A local svm approach. In Proceedings - International Conference on Pattern
Recognition, volume 3, pages 32 – 36 Vol.3, 09 2004.

[74] M. Schuster and K.K. Paliwal. Bidirectional recurrent neural networks. Trans.
Sig. Proc., 45(11):2673–2681, November 1997.

[75] Thomas Serre, Lior Wolf, and Tomaso Poggio. Object recognition with features
inspired by visual cortex. In In CVPR, pages 994–1000, 2005.

[76] A. Shahroudy, J. Liu, T. T. Ng, and G. Wang. Ntu rgb+d: A large scale dataset
for 3d human activity analysis. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1010–1019, June 2016.

[77] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kip-
man, and A. Blake. Real-time human pose recognition in parts from single depth
images. In Proceedings of the 2011 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR ’11, pages 1297–1304, Washington, DC, USA, 2011.
IEEE Computer Society.

[78] Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for
action recognition in videos. In Proceedings of the 27th International Conference
on Neural Information Processing Systems - Volume 1, NIPS’14, pages 568–576,
Cambridge, MA, USA, 2014. MIT Press.

[79] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. CoRR, abs/1409.1556, 2014.

[80] Alan F. Smeaton, Paul Over, and Wessel Kraaij. Evaluation campaigns and
trecvid. In MIR ’06: Proceedings of the 8th ACM International Workshop on
Multimedia Information Retrieval, pages 321–330, New York, NY, USA, 2006.
ACM Press.

[81] Khurram Soomro, Amir Roshan Zamir, Mubarak Shah, Khurram Soomro,
Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions
classes from videos in the wild. CoRR, page 2012.

[82] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin A. Ried-
miller. Striving for simplicity: The all convolutional net. CoRR, abs/1412.6806,
2014.

[83] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfit-
ting. Journal of Machine Learning Research, 15:1929–1958, 2014.

[84] M. Stone. Cross-validatory choice and assessment of statistical predictions.
Journal of the Royal Statistical Society. Series B (Methodological), 36(2):111–
147, 1974.

[85] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning
with neural networks. In Proceedings of the 27th International Conference on
Neural Information Processing Systems - Volume 2, NIPS’14, pages 3104–3112,
Cambridge, MA, USA, 2014. MIT Press.

[86] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the
inception architecture for computer vision. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2818–2826, June 2016.

[87] T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Divide the gradient by
a running average of its recent magnitude. COURSERA: Neural Networks for
Machine Learning, 2012.

[88] Jonathan Tompson, Arjun Jain, Yann LeCun, and Christoph Bregler. Joint train-
ing of a convolutional network and a graphical model for human pose estima-
tion. In Proceedings of the 27th International Conference on Neural Information
Processing Systems - Volume 1, NIPS’14, pages 1799–1807, Cambridge, MA, USA,
2014. MIT Press.

[89] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spa-
tiotemporal features with 3d convolutional networks. In 2015 IEEE International
Conference on Computer Vision (ICCV), pages 4489–4497, Dec 2015.

[90] J. R. Uijlings, K. E. Sande, T. Gevers, and A. W. Smeulders. Selective search for
object recognition. Int. J. Comput. Vision, 104(2):154–171, September 2013.

[91] Subhashini Venugopalan, Marcus Rohrbach, Jeff Donahue, Raymond Mooney,
Trevor Darrell, and Kate Saenko. Sequence to sequence – video to text. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV),
2015.

[92] P. Vepakomma, D. De, S. K. Das, and S. Bhansali. A-wristocracy: Deep learning
on wrist-worn sensing for recognition of user complex activities. In 2015 IEEE 12th
International Conference on Wearable and Implantable Body Sensor Networks
(BSN), pages 1–6, June 2015.

[93] Dibia Victor. Real-time hand tracking using ssd on tensorflow. https://github.
com/victordibia/handtracking, 2017.

[94] J. Wang, Z. Liu, Y. Wu, and J. Yuan. Mining actionlet ensemble for action
recognition with depth cameras. In 2012 IEEE Conference on Computer Vision
and Pattern Recognition, pages 1290–1297, June 2012.

[95] Jindong Wang, Yiqiang Chen, Shuji Hao, Xiaohui Peng, and Lisha Hu. Deep
learning for sensor-based activity recognition: A survey. CoRR, abs/1707.03502,
2017.

[96] T. Xiang and S. Gong. Video behavior profiling for anomaly detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 30(5):893–908, May
2008.

https://github.com/victordibia/handtracking
https://github.com/victordibia/handtracking

[97] Mao Ye, Qing Zhang, Liang Wang, Jiejie Zhu, Ruigang Yang, and Juergen Gall.
A Survey on Human Motion Analysis from Depth Data, pages 149–187. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2013.

[98] Serena Yeung, Olga Russakovsky, Ning Jin, Mykhaylo Andriluka, Greg Mori, and
Li Fei-Fei. Every moment counts: Dense detailed labeling of actions in complex
videos. arXiv preprint arXiv:1507.05738, 2015.

[99] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable
are features in deep neural networks? In Proceedings of the 27th International
Conference on Neural Information Processing Systems - Volume 2, NIPS’14, pages
3320–3328, Cambridge, MA, USA, 2014. MIT Press.

[100] Bowen Zhang, Limin Wang, Zhe Wang, Yu Qiao, and Hanli Wang. Real-time
action recognition with enhanced motion vector cnns. CoRR, abs/1604.07669,
2016.

[101] R. Zhao, H. Ali, and P. van der Smagt. Two-stream rnn/cnn for action recognition
in 3d videos. In 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 4260–4267, Sept 2017.

	Introduction
	Motivation
	Goals
	Outline

	Background - Artificial Neural Networks
	Convolutional Neural Network (CNN)
	Object Detection
	Faster Region-CNN (Faster R-CNN)
	Region-based Fully Convolutional Network (R-FCN)
	Single Shot MultiBox Detector (SSD)
	Common Practices in Object Detection

	Recurrent Neural Network (RNN)
	Long Short-Term Memory (LSTM)
	Gated Recurrent Unit (GRU)

	Related Work
	Spatio-Temporal Features
	Two-Stream Models
	Pose-based Models
	Hybrid Models
	Unsupervised Learning
	Recap and Runtime Analysis

	Concept
	The Architecture - A Sequential Model
	EgoBaxter - A Baxter PoV Dataset
	Training and Evaluating Neural Networks
	Sequential Part 1 - The Spatial Component
	Objects of Interest
	Transfer Learning

	Sequential Part 2 - The Temporal Component
	Determining the SpatioTemporal Tradeoff

	Implementation
	EgoBaxter - A Baxter PoV Dataset
	Acquisition
	Labeling

	The Spatial Component
	Configuring the Detection Models
	Training the Models
	Evaluating the Models

	The Temporal Component
	Building the Recurrent Networks
	Training the Networks
	Evaluating the Networks

	Evaluation
	TensorBoard - A Visualization Tool
	Evaluation of the Spatial Component
	Evaluation of the Temporal Component
	The SpatioTemporal Tradeoff

	Conclusion
	Future Work
	Bibliography

