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Abstract

This thesis aims to improve human-robot collaboration by modeling the robot’s nav-
igation on human pathfinding. As humans are very experienced with other humans’
walking patterns, this may lead to a more natural and intuitive cooperation. The hu-
man collaboration partner can feel more in control of the situation, because the robot’s
movements are more predictable, even for an untrained observer. To achieve this, one
first has to collect data about human pathfinding and extract some key findings. These
findings can then be applied to a navigation algorithm resulting in a practical approach
to generate human walking paths for the robot to navigate on. A lot of work on human
trajectories is very theoretical in nature and not easily, if at all, applicable to actual
practical scenarios. The approach proposed in this thesis promises an elegant solution
designed to be applied in real contexts including dynamic environments, instead of con-
trolled, experimental contexts. In the process of implementing this algorithm, a software
framework is being designed to integrate a self written navigation algorithm easily on
the Bazxter Mobility Base.
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1 INTRODUCTION

1 Introduction

The number of robots working in industrial scenarios is rapidly growing. The 2017
World Robotics Report, as published by the International Federation of Robotics (IFR)EI,
estimates, that by 2020 more than 1.7 million new industrial robots will be installed
worldwide. The tasks taken on by these robots are usually either repetitive and tedious or
they include work that cannot be done by humans in an ergonomical way. For example,
robots aid in lifting heavy assemblies in the automotive industryEl7 similar to what is
shown in figure [1] and they palletize boxes of chocolatd?]

Figure 1: Robot aids in lifting heavy assemblyEI

A scenario, which is not very common yet, is real collaboration between a human
and a robot, but since robots are becoming more and more technically advanced, the
possibilities for collaboration increase. This is in particular due to improved sensor
systems and sensitivity of robots, that allow humans to safely work alongside robots,
as those can avoid collisions and therefore prevent injuriesﬂ What is more, human-
robot interaction is no longer focussed on just industrial scenarios, but robots are also
increasingly seen in domestic context, for example in the form of vacuuming robotﬂ
The spectrum of robots that exist to date is already very broad, however not a lot of
people regularly interact with robots and there is a number of reasons for that. In
industrial contexts, the most important reason, as mentioned above, is the human co-
worker’s safety. Like any technology, a robot can fail to execute its task properly, possibly
endangering the human, that is working with it. Even if the robot is working correctly,
human error or mishaps could also lead to injuries. Therefore, proper precautions have
to be taken to ensure the human’s safety. A reason that is often being neglected, but
especially important in social contexts, is the human’s attitude towards robots and the
possibility of working in such a collaborative team [29, 17]. While many people are

"https:/ /ifr.org/free-downloads/

Zhttps:/ /www.automobil-produktion.de/technik-produktion/fahrzeugtechnik /schutzzaunloser-roboter-
entlastet-audi-mitarbeiter-bei-montage-123.html

3http:/ /www.palettierroboter.com/applikationen /schokolade/

“https://automationspraxis.industrie.de/news/mensch-roboter-kollaboration-im-tagungsfokus/

https://www.kuka.com/de-de/produkte-leistungen/robotersysteme/industrieroboter /1br-iiwa,

Shttp:/ /www.allonrobots.com/household-robots.html



1 INTRODUCTION

generally open to the idea, the difficulty is not only to guarantee that they are safe,
but also to comply with any social rules to induce a feeling of safety. This is obviously
necessary for humans to comfortably live with a robot in their home or to work in such an
environment. In order to achive this, the human needs to feel in control of the situation
at any given time, which is hardly the case if the robot’s actions cannot be understood
by the human, because they are unpredictable [IT]. This holds true for any kind of
action, however this thesis focusses on the robot’s navigation, more accurately on the
trajectories taken by the robot.

Figure 2: Sigmoidal walking trajectory of humanoid robotﬂ

While in industrial scenarios it is common and mostly sufficient to have stationairy
robots, many applications need mobile robots, as they are far more flexible. Mobile
robots can aid in any form of logistics, they can switch between tasks at different lo-
cations and they can accompany a human almost anywhere. For all of these cases it
is instrumental, if not necessary, for the robot to move automatically, meaning without
any human assistance, as manually controlling it would be very unpractical and not
collaborative. Therefrom results the need for autonomous mobile robots and suitable
navigation algorithms. Simply letting the robot move on the shortest path is not only
not that simple at all, because the path has to be planned and commands for the robot
to follow this path have to be calculated, it can also result in unintuitive trajectories,
one of which can be seen in figure 2l The s-curve the robot moves on seems unreason-
able, because there is no obstacle the robot is avoiding. Unpredictable movements like
this may surprise humans and make them feel uncomfortable. Additionally, a surprise
moment like this may induce a human to have an inappropriate reaction with potentially
dangerous consequences, such as stepping back and tripping over something. Thus it is
important to make the robot’s behavior predictable for a human.

"http://www.dis.uniromal.it/labrob/research/HumanoidsTrajCtrl.html
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1.1 Motivation

The movement pattern of the robot in figure [2| is most likely caused by the use of an
ordinary A* algorithm [24] to plan the path on a grid that has been placed over the map
of the environment. Two possible solutions of the A* algorithm in an abstract scenario
can be seen in figure

&

N,
\

Figure 3: Possible solutions of the A* algorithm

As one can see, the use of the A* algorithm to plan a mobile robot’s paths can result
in unintuitive paths with sharp turns and zigzag motions. Particularly for a strong or
heavy robot, such movements can make a human uneasy around the robot and unwilling
to approach it. Moreover, it can be hard to predict the robot’s destination, when it’s
moving on such a path, especially for an untrained observer. This can be discomforting
and can also cause fear of collisions, because the human does not feel in control of the
situation, when it is hard to predict the robots target point. A solution to this problem
is to make the robot navigate in a more human way, as humans are very experienced
with other human’s walking patterns, which may lead to a more natural and intuitive
cooperation in general. This approach also solves another issue with the A* algorithm.
The shortest path to a target point around an obstacle often includes walking very close
to the obstacle, which can be problematic in many cases. For example if the obstacle is
a human, the robot may be entering the human’s comfort zone, resulting in discomfort
on the human’s side or the obstacle can be a moving one, for which it would also be
better to keep some distance to it to avoid collisions. These problems could be solved
with a human-like navigation algorithm, as humans tend to walk around obstacles with
some space between them and the obstacle, if this is possible. The replication of human
walking is widely researched about in the field of humanoid robots [10, 27, B34] and
the idea to replicate human walking paths is not new in itself, either. However, the
work done so far on human trajectories is of a very theoretical nature and not easily,
if at all, applicable to actual practical scenarios. The approach proposed in this thesis
promises an elegant solution designed to be applied in real contexts including dynamic
environments, instead of controlled, experimental contexts.



1.2 Robot 1 INTRODUCTION

1.2 Robot

The subject of interest in this thesis is the Baxzter Mobility Base (BMB), which can
be seen in figure [4, once with the Baxter Robot mounted on top and once without it.

Figure 4: Baxter mobility base with and without Baxter robot

The Baxter Robot is available as an industrial or a research robot and in combination
with its mobile base it has the potential to be an autonomous mobile robot. The BMB
comes equipped with an on-board computer, that will run the navigation algorithm, an
inertial measurement unit (IMU) that aids the robot’s odometry and a 360 degree laser
range finder, which can detect obstacles. The Mecanum wheel system enables the robot
to move in any direction while independantly controlling its rotation and because of this,
the wheels are often called omni-wheels. The capability to freely combine translation
and rotation is quite useful for the navigation algorithm, as it enables more freedom,
than an only forward moving and steering robot could provide.

1.3 Goals

The main goal of this thesis is the development of a human-like navigation algorithm to
improve human-robot collaboration by making the robot’s movements more predictable
and more intuitive, which should lead to an overall more natural cooperation. This is
realized, by ensuring the robot’s trajectories resemble potential paths, humans would
actually walk on.

In the process of implementing this algorithm, a software framework is being designed
to integrate a self written navigation algorithm easily on the BMB. This framework
includes the robot localization and a safety component, which prevents collisions with
humans and other obstacles, as well as a skeletal structure for the actual navigation
algorithm.

Not part of this thesis, on the other hand, are any other measures to estimate the
robot’s behaviour, like visual or auditive outputs. The next steps of the robot should
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be predictable solely based on it’s forward motion and the path taken. The maximum
speed of the robot will be set to a moderate level to ensure this is possible, but there will
not be a detailed accelation and deccelaration process to resemble human walking pace.
While moving obstacles, such as humans, will be detected to prevent any collisions, their
future movements will not be predicted. Therefore, humans are only avoided based on
their current position.



2 RELATED WORK

2 Related Work

The replication of human walking is a long standing problem in robotics [10} 27, 34]. This
also includes research on human walking trajectories [10]. This chapter assesses some of
the previously pursued approaches and their shortfalls. Additionally, some approaches
to autonomous navigation are being introduced and assessed. As the main goal of this
thesis includes an effort to improve human-robot collaboration, this term is being defined
for the scope of this thesis.

2.1 Human Walking Paths

The desire to replicate human walking paths is not new [10, [7]. However, most work
done on this topic is either of a very theoretical nature and thus not easily deployable
in actual scenarios or it requires a variety of sensors to extract human trajectories. This
section introduces some important approaches and identifies useful findings.

2.1.1 Generation of Human Walking Paths

A commonly used approach to generate biological movements such as human walking is
the optimal control theory [10]. It formalizes the problem of trying to minimize a cost
function in consideration of side conditions encoded in differential equations. In [5] and
[28] the authors found evidence, that the human path planning process equates to an
optimal control problem with an unknown cost function. In their work ‘Generation of
human walking paths’ [30], the authors tried to find this cost function with the inverse
optimal control problem, meaning that they used data of actual human walking paths
and different models for the side conditions, in order to find the function, that may have
been minimized. The goal of all these papers is to generate the exact geometric shape
of human walking paths for a given start and end position and orientation. As they
focused on these geometric details, they did not include the movement around obstacles,
let alone dynamic ones.

2.1.2 Realistic Human Walking Paths

In the paper 'Realistic Human Walking Paths’ [7], the authors’ goal was to develop a
realistic model of pedestrian navigation, meaning a model not only for suitable human
walking paths, but for realistic paths humans would actually take. Although they devel-
oped this model for entertainment applications and different kinds of simulations, some
of their finding are useful for this thesis. In order to gain insight on pedestrian navi-
gation, an experiment was conducted, in which participants were observed in controlled
conditions and salient features of pedestrian walking were identified. Their findings were
then validated through comparison with pedestrians in a natural, non controlled setting.
In the experiment, participants had to carry a piece of paper from one place to another
and a video camera recorded it. The path taken by the participant was then digitalized
by projecting the human’s center of mass to the ground. The experiment was varied
through different obstacle situations, including the need for an s-turn and no turn to get
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to the target point. The images below (figure [5)) show the observed trajectories in these
two experimental conditions.

No Turn

(a) S-turn condition (b) No turn condition

Figure 5: Observed trajectories under different turn conditions [7]

In the s-turn condition people kept a certain distance to the obstacles and walked on a
rounded curve with no corners and in the no turn condition people did not always follow
the straightest and thus shortest path, although it would have been possible.

2.1.3 Walking Characteristics Extraction and Behavior Patterns Estimation by
Using Similarity with Human Motion Map

The authors’ of "Walking Characteristics Extraction and Behavior Patterns Estimation
by Using Similarity with Human Motion Map’ [33] goal was not to use the extracted
walking characteristics to make a robot move in a human way, but to use this data to
predict human motion, so a robot can move autonomously and prevent collisions with
humans. However, their findings can be applied to get a more human robot navigation,
as well. In order to collect data on human walking behavior, the authors conducted an
experiment in which they let a robot observe humans in different environments, including
a corridor, a corner and an elevator hall. They collected multiple independent data sets
in the same areas, because human motion is highly dynamic and uncertain. They then
used the human position displacement as walking characteristics in each environment of
the observation experiment. The visualization of the results can be seen in figure [6

kR L

Figure 6: Observed human walking trajectories [33]



2.1 Human Walking Paths 2 RELATED WORK

An obvious observation is, that human walking behavior depends on the environment.
In the corridor, humans walked in a straight line in the middle of the corridor and in
the corners people walked in a curved line. Near the elevator people were mostly just
waiting or pacing, which is not important for this thesis, as waiting does not need to
be implemented, because the robot should simply not move when it does not need to.
With their approach, the authors were able to predict human motion only in the before
observed areas or very similar ones, such as the same corridor on a different floor of the
building, which seems quite unpractical, because the collection of data is non optional
in order to use this system.

2.1.4 Mobile Robot Navigation Based on Human Walking Trajectory in Intelligent
Space

A different approach was taken by the authors of '"Mobile Robot Navigation Based on
Human Walking Trajectory in Intelligent Space’ [I3]. Their motivation were robots that
are supposed to provide services in human populated environments and they thought the
best navigation style for this was just like a human’s. In order to achieve this, multiple
vision sensors needed to be installed in the environment and the cameras needed to be
calibrated to extract human walking trajectories. All trajectories are a sequence of data
points and similar trajectories are grouped together and the averaged trajectories are
smoothed based on method of least square [16]. From these trajectories key points are
extracted, meaning points where humans stop often and transfer points, where humans
enter or exit an environment. The stop points are found as points where a human’s
walking speed is below a threshold and then grouped together and the center is used as
a node. The transfer points have to be set manually. From these points a topoligical
map is created. An example of this can be seen in figures [7[(a) and (b) below.

Key Points

(a) Obtained human walking tra- (b) Topological map
jectories

Figure 7: Human walking trajectories and accordingly generated topological map [13]

The topological map represents the environment, with the key points as nodes and the
extracted trajectories as edges, in both directions respectively. This map is then used
in robot navigation by finding a global path with Dijkstra’s algorithm based on the
topological map and local person avoidance, while navigating on the trajectories. The
paths taken by the robot should then reflect human activity patterns in daily life. In
order to navigate on these trajectories the robot’s global position needs to be known.
This is done with a dead reckoning system and landmarks distributed on the ceiling and
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an infrared ray, which is unpractical, as the environment needs to be prepared before
the robot can move. Two further inconveniences are, the robot only being able to move
to one of the key points and not to an arbitrary one. This is less of a problem, if the
robot only needs to execute tasks at these points, but it is certainly unflexible. It is also
not very human to move back to the predefined trajectory after avoiding a person, as
humans constantly 'recalculate’ their paths and adjust after leaving the initial trajectory.

2.2 Robot Navigation

In order to design a software framework to integrate navigation algorithms on a robot
it is worth looking into similar systems first. As there are countless approaches to
autonomous robot navigation, this section can only cover a small part of this field and
is restricted to one very well known framework, which provides autonomous navigation
software and one less known framework, which is being developped by DFKI GmbH.

2.2.1 ROS

The arguably most well known robotics software platform is called ROS, which is an
acronym for robot operating system. As the BMB is ROS-compatible, this system is not
only important as a related work, but also as a contributive component, because it will
be used for the basic control of the robot. For more details on this refer to chapter
The official description of ROS is as follows:

"ROS is an open-source, meta-operating system for your robot. It provides
the services you would expect from an operating system, including hardware
abstraction, low-level device control, implementation of commonly-used func-
tionality, message-passing between processes, and package management. It
also provides tools and libraries for obtaining, building, writing, and running
code across multiple computers.” [3]

The following explainations are based on [2]. ROS as a framework is language-
independent. At the present time, there are three main libraries, making it possible
to program ROS in Python, Lisp or C++. There is also an experimental Java library.
The basic concepts of ROS can better be understood when distinguishing between static
concepts and concepts that are used by the running system. Statically all ROS resources
are organised in a hierarchical structure of packages and stacks, called ROS File System.
A package, as the most fundamental unit, is a directory, which contains resources, such
as external libraries, data, configuration files and nodes, which are explained below. A
collection of packages is called a stack. It usually offers a bundle of functionalities, such
as navigation or localization.

The dynamic concepts of ROS are combined in the ROS Computation Graph. Any
ROS program consists of different processes called nodes. A node is an instance of an
executable and it may equate to anything from a sensor to a controlling algorithm. All
running nodes are managed by a master, so they can find each other and exchange data.
This exchange can be done in two different ways, asynchronously via a topic and syn-
chronously via a service. A topic transports data based on a publish/subscribe system.
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One or more nodes can publish and subscribe to the same topic, so it is essentially a
many-to-many bus. The data published on a topic is structured as a typed message. A
message is a data structure that can consist of primitve types such as strings, booleans
and integers and of other messages recursively. If there is a need for synchronous com-
munication between two nodes a service can be used. The functionality of a service is
similar to that of a remote procedure call.

One of many functionalities provided by ROS is a navigation stack. It includes al-
gorithms for all levels of the navigation process, meaning mapping, localization, path
planning and obstacle avoidance. For this navigation stack to be applicable the robot
needs to fulfill some requirements. Obviously the robot needs to be running ROS and
publish sensor data using the correct ROS Message types. There needs to be a planner
laser mounted on the robot, as this is used in the mapping and localization process. The
robot’s motion needs to be controlled by sending velocity commands in the form of a
two dimensional translational vector and a one dimensional rotational vector. The robot
should also have a square or circular shape, because the navigation stack was developed
on such a robot and there are some problems generalizing the algorithms. For example
large rectangular robots do not fit through doors, although they would simply need to
be turned?]

Since the BMB fullfills all of these requirements it is possible to use only ROS for
autonomous navigation, however since ROS does not include a human-like navigation
stack all of the problems mentioned in the introduction, such as moving close to obstacles,
moving on zigzag paths and being unpredictable, are present. It would also be possible
to integrate a self written ROS navigation package into the navigation stack, but for this
thesis, it was decided to write the algorithm in Java instead.

2.2.2 ROCK

Another robotics framework is DFKI GmbH’s ROCK (robot construction kit). It is the
primary software framework running on most of DFKI GmbH location Bremen’s own
robot developments and it is designed to allow easy reuse of software components from
different robotics projects. The general idea behind ROCK is very similar to that of
ROS, but it is not nearly as wide spread, therefore there are not as many features, that
are already implemented. The basis of ROCK’s component model is formed by Orcos
Real Time Toolkit.

Contrary to ROS, ROCK does not provide openly available, generally applicable au-
tonomous navigation functionality, at the present time.

2.3 Human-Robot Collaboration

The term human-robot collaboration (HRC) means a scenario, in which a human and a
robot work hand in hand, without separation and without safety fencing. So, rather than
replacing, the robot assists the human with its skills, which are usually precision, strength
and endurance. There being no seperation between automated and manual workstations

8http://wiki.ros.org/navigation

10
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leads to all of the advantages of automation, such as efficiency, being present, without
losing the flexibility and decision-making abilities of humans. More information on this
topic can be found in the ISO/TS 15066 guidelinﬂ HRC is considered to be one of the
key factors in Industry 4.@

2.4 Robot Localization

There are a number of ways to localize a robot, such as Simultanious Mapping and Lo-
calization (SLAM) [I4] and landmarks [6], that will not be part of this thesis. The mobile
robot localization method utilized in this thesis includes an extension of the Monte Carlo
Localization (MCL) [12], called Adaptive Monte Carlo Localization (AMCL) [23]. This
section explains both MCL and the extension to AMCL, based on 'Robot Localization
in Dynamic Environments’ [32].

2.4.1 Monte Carlo Localization

MCL uses a particle filter algorithm to localize a mobile robot on a given map. The
particle filter estimates the pose of the robot, by using a weighted set Sy of n particles
that represent the system’s belief about the current state at time t¢:

Sy = {(s?,w@) li=1, ,n}

The state of the ith particle at time ¢ is denoted by ng‘) and its assigned importance

weight is denoted by wt@. The sum of all weights, at any given time, is equal to one and
they represent the probability for the particle’s state to be the true state of the system.

In every iteration, the algorithm receives a map of the environment at time ¢, a motion
control measurement, an observation of the surrounding area along with the sample set
S:—1, which represents the system’s belief about the previous time step. The motion
control measurement is usually taken from an internal measurement of the robot, for
example the robot’s odometry, calculated with data from motion sensors. The external
observation can be taken from external sensors, such as a laser range finder. The previous
set of particles and the control update is used to predict the new state of the particles.
After this step, new importance weights are assigned to each particle according to the
external observation. The weight depends on how well the particle’s new state on the
map fits the external observation. If a particle was in fact near the robot’s true pose,
its importance weight would be very high. The last step is then the sampling from
this updated set, which is done according to the importance weights. This means that
the probability of a particle to be sampled is proportional to its importance weight and
particles that are more likely to represent the robot’s true pose are more likely to be
sampled. In reality, a particle with a very high importance rate can be sampled more
than once, while a particle with a very low importance weight is likely to not be sampled,
at all. An example of this process, can be seen in figure

“https://www.beuth.de/de/vornorm /iso-ts-15066 /250504228
Ohttps: //de.wikipedia.org/wiki/Industrie_4.0

11
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Figure 8: Example of MCL [32]

There is a robot in a one dimensional corridor with three doors. The robot has a sensor
with which it can determine, wheter it is standing in front of a door and it counts its
steps, in order to know its relative position. For this example, the same map is used
in every step, but it would be just as possible to add or remove doors. In figure (a),
the particles are uniformly distributed, because there is no knowledge about the robot’s
position in the corridor. In the next step it has received data from its door sensor, so the
importance weights of the particles are being adjusted according to the information, that
the robot is standing in front of a door. As there has been no resampling of the particles
yet, the distribution is still the same. In figure (c), the sampling did already take place
and the robot has moved forward, so the particles are being shifted according to the
motion estimation by the robot’s step counter. After this, there is a new measurement
from the door sensor, and the importance weights are adjusted just like before. As one
can see, only one of the clusters of particles gets high importance values, namely the one
that best represents the robot’s actual position. From this point onwards, as visible in
figure e), the particle filter accurately estimates the robot’s true location.

12



2.5 Summary 2 RELATED WORK

2.4.2 Adaptive Monte Carlo Localization

AMCL aims to improve MCL, by adjusting the number of particles used in the local-
ization process. When the robot is unsure of its position, it uses more particles, but
when the filter converges, a small number of particles are sufficient to track the robot’s
location.

The algorithm uses the Kullback-Leibler divergence (KLD) [26], in order to adjust
the particle set size. KLD measures the difference between probabilistic distributions
and using it allows to adjust the number of particles according to the quality of the
true distribution’s approximation. The algorithm’s inputs are the same as in the MCL
version and additionally there are two statistical error bounds € and §. The error bounds
are used to determine the particle set size, by ensuring that the error between the sample
based approximation and the true distribution is less than € with a probability of 1 - 4.
The resampling process is different to that in the MCL. In each step of the algorithm,
particles are generated until the requirement mentioned above is fulfilled. To determine
whether this is the case, the algorithm uses a histogram over the entire state space with
all bins being initialized as empty in each iteration. Then, exactly as in MCL, particles
are sampled from the previous set according to their importance weights and their states
are predicted using the control update. Also as in MCL, the weights are then updated
according to how well the measurements fit the map at the particles’ states. After this,
each particle is placed in a bin on the histogram and whenever a particle is placed in
an empty bin a counter c¢ is incremented. This counter ¢ and the statistical bounds
€ and 0 mentioned before, determine the number of particles needed for an efficient
representation of the state space. If ¢ is high, it means that the sampled particles are
spread around the state space and the filter has not converged, so a lot of different bins
have been filled. Therefore the number of particles has to be high. If the particles are
focused in small clusters, a lot of them will fall into the same bins and ¢ will be low, so
the number of particles needed is also low.

2.5 Summary

This section summarizes the useful findings of the related work mentioned above and
compares it to the approach, that is proposed in this thesis.

While the optimal control theory provides very detailed information on the geometric
shape of human walking trajectories, it is not designed to be used to calculate paths for
a robot to move on. The same holds true for the pedestrian model, however some key
characteristics, such as rounded curves and distance to obstacles can be adopted. The
human motion prediction can be used to estimate human walking paths, but as humans
are highly complex, it is very hard to develop a system, which is generic enough to be
used universally. A robot navigation system based on the concept of intelligent space
works well, but is highly impractical and inflexible. It would be possible to implement a
human-like navigation algorithm purely on the basis of ROS, but this requires knowledge
about ROS specific details, both for the deployment and maintanance of the system.

An overview of the capabilities and limitations of the methods developped in the
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2.5 Summary

2 RELATED WORK

related papers in comparison to the proposed method can be seen in table

Wotks in  |Needs

Suitable for human- |dvnamic observation|Obstacle |Learning

robot collaboration  |environment|data avoidance [system
Optimal control Not an
approaches 2.1.1 No, because it is not actual

actually deployable (No Yes No system
Pedestrian navigation |No, because it is
model 2.1.2 build for simulation

pUIpOses No Yes Yes No
Walking No, because it is
characteristics only designed to
extraction 2.1.3 estimate human

motion No Yes No No
Human walking
trajectory in intelligent
space 2.1.4 Yes No Yes Yes No
F.OS navigation stack
2.2.1 Not specifically

designed for this

purpose, but possible|Yes No Yes No
Proposed approach Yes Yes No Yes Yes

Table 1: Comparison of related work
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3 CONCEPT

3 Concept

This chapter concretizes the methods of resolution for the problem of human-like robot
navigation. Some key aspects, which make a path appear human-like, are described,
possible transfers to robot navigation are explained and implications for the BMB navi-
gation framework (BMBNF) are inferred.

3.1 Human Walking Paths

One of the main challenges of making a robot navigate in a human way, is that there
is no accurate definition of what human trajectories or even just human-like paths are.
However some aspects found in traditional robot navigation can clearly be classified as
non-human, such as sharp turns and zigzag motions, so there is a general understanding
about non-human walking characteristics. This is because we, as humans, are very
familiar with the way humas walk, because we observe it every day. Combining these
characteristics with the observation of people in everyday life and the findings explained
in the related work chapter, the following key aspects of human path finding have been
deduced:

e Humans prefer to walk through familiar areas, so they will probably take paths
they have already taken many times, rather than possible shorter ones. This is
because it would require more attention to walk through an unknown area and
still get to one’s destination. The indicated can be assumed, as driving through
unfamiliar areas has a similar effect [§].

e Resulting from the former point, the length of a path has only a secondary role,
but it is still considered for efficency reasons.

e Wider areas are generally preferred over areas too narrow to comfortably walk
through. This is because it would require additional attention to not knock any
body parts on any obstacles.

e Similarly, humans tend to keep some distance to obstacles, if possible. This can,
for instance, be seen in the s-turn condition in the experiment from section 2.1.2,
where people kept a distance to the obstacles at all times.

e When walking through a narrow segment, humans tend to walk right in the middle
of the obstacles. For example, in the experiment from section 2.1.3 people walked
right in the middle of the corridor.

e Paths taken by humans are rounded with smooth curves and there are generally
no sharp turns or zigzag, because it would require additional effort.

e Humans naturally walk forwards and neither sideways nor backwards, unless ab-
solutely necessary, simply because this is what we are biologically built to do.
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Of course these characteristics are not quantifiable, but since there are substantial
differences between individuals anyways, following these rules should result in paths,
that resemble actual human ones.

3.2 Human-Like Navigation

As robot navigation is a multilayered problem, including the handling of sensor infor-
mation, the global localization of the robot, path planning and path execution, the
algorithm can be compartmentalized. For clarity’s sake, the individual steps of the algo-
rithm, as depicted in the diagram below (figure E[), will be looked at individually and the
realization of each of the human-like path characteristics from above is explained in the
relevant step. While this thesis focusses on the BMB, all of these concepts are general
and thus also applicable to other robots. However, there may have to be adjustments
in the actual implementation, for example for robots without omni-wheels, because the
translational and rotational velocity cannot necessarily be set independantly, like is the
case with the BMB. Therefore, the path execution algorithm would need to be modified.

Parameter

T

Fath Planner

Dead Reckoning

Smoother

Path Executer

Map Controller|

Figure 9: Steps of the navigation algorithm

Step 1. Map

In order to use graph search algorithms in the path planning process, one needs to
discretize the continuous environment the robot is supossed to navigate in. One popular
approach to this problem is cell decomposition, where the two dimensional space is
decomposed into cells of some kind, often circles or convex polygons [4]. The only
regular polygons, that can be used to tessellate continuous 2D environments are triangles,
squares and hexagons [4] with square grids arguably being the most popular ones. Using
a square grid, however, makes for the unnatural movements usually seen with the A*
algorithm, as it leads to straight lines and sharp turns, as depicted in figure [10] on the
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left side, rather than smooth curves or to zigzag motions, as depicted in figure [10] on the
right side.

Figure 10: Possible solutions of the A* algorithm

An elegant way to deal with this issue is to use a hexagon grid instead, as this allows
for steps in six different directions including four diagonal ones, as can be seen in figure
below. Since hexagons align with each other the problem of distance differences, that
would occur with diagonal steps on a square grid does not occur.

—

L

Figure 11: Neighbours on square grid and hexagon grid

While it would be possible to use squares small enough, that the difference in length
of a diagonal and non-diagonal step are neglectable, this would result in a substantially
smaller grid and thus a bigger search graph, which would make the pathfinding unnec-
essarily time-consuming. The size chosen for the hexagons should depend on the robot’s
measurements, because if they are too small, the pathfinding can be too slow and if
they are too large the position of obstacles is inaccurate and paths may appear blocked,
although they are not. An example of this can be seen in figure where a 20 cm
hexagon grid has been laid over a 1m wide cordidor. While in reality, a 80 cm wide
robot would fit through this coridor, this does not seem to be the case on the hexagon
map. Therefore, the size of the hexagons will be part of the adjustable parameter set.

G e

Figure 12: Coridor on a hexagon grid

One way to handle this map, is to connect it to the TEDURU server [15], which is a
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dual reality framework for HRC scenarios. It can be used to manage the hexagon grid
by providing information, such as the size and orientation of the hexagons. TEDURU
can then provide collision information about every hexagon that can be used to update
the map with information on obstacles. The detection of obstacles, however, is still
a challenge, as the sensors of most robots cannot cover the entire surrounding of the
robot. For example a table is seen as four small obstacles by the BMB, as, because of
the LRF’s height, only the table’s legs are detected, but not the tabletop. This is not
as problematic if the robot is small enough to fit under the table, but it could make a
human co-worker uncomfortable if the BMB emerges from underneath a table and if the
Baxter robot is mounted on top of the BMB, it would result in a collision. Therefore
it would be helpful to introduce some sort of external obstacle detection, for example
in the form of cameras that cover the entire space. If this is successful the map should
consist of the free moving space to plan on, as well as all the obstacles, possibly with
information such as their height. In figure [13| below, the P4PLab (Power4Production)
can be seen, as an example of such a map. This data can be used to either plan around
the obstacles or if the only possible way is to move under a table, depending on the
robot, this path could also be considered, although it is certainly not the most human
way to move under a table. Another point to note is, that even small obstacles, that
could easily be stepped over by a human, have to be registered, as a robot can be more
limited in its movements.

Figure 13: Hexagon map of the P4PLab

Step 2. Map Controller

In pursuance of human-like trajectories, the map should be evaluated to allow the graph
search algorithm to find suitable solutions. The first key aspect of human pathfinding
that can be taken into account, is the keeping of a certain distance to obstacles, if
possible, for example when walking around a table. Not only is this human, it is also
important for safety reasons, because surrounding humans are also detected as obstacles
and the robot should not get too close to them. To achieve this, the obstacles on the
map are processed and their outer edges are diffused, resulting in a fluent transition
from the free moving space to the obstacle. A graphical representation of the result of
diffusing two small obstacles can be seen in figure Part of the transition space can
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still be entered by the robot, if all other passage ways are blocked, or the path around
the obstacle is unreasonably long.

Figure 14: Two obstacles with diffused edges

This diffusion process can be realized by assigning double values v; between 0 and 1 to
every map tile ¢, with a 1 standing for ‘blocked’” and a 0 for ‘free’ and then transferring
part of that value to the neighbor tiles n;(t) (with i = 1,..., 6), that are not part of the
obstacle. The obstacle value can be calculated as follows:

6
v(t) = maz {Z é -v(n;) - flow_value, threshold}
i=1

It is then added to the cost of entering said map tile, meaning the transfer takes place, by
taking a certain percentage, alias the flow_value, from the average value of all neighbor
tiles and assigning the result to the tile in question, as long as it exceeds a certain
threshold. This flow_value is part of the adjustable parameter set, as it controlls how
close the robot can move to obstacles and the threshold is necessary, because an obstacle
should only affect nearby areas and not the entire map. In order to get smooth values,
the transferring is done in an iterative manner until no value changes any longer. This
also leads to a fluent change of the values when an obstacle is moved, because they are
not simply set to 0 when the distance to the obstacles increases, instead they decrease in
each iteration step. Furthermore, this results in the best values being right in the middle
between two obstacles that are close, but not too close to each other, so the robot can
take a path right through the middle, what is also a key aspect of human pathfinding.
The images below (figure show the map from the last step with the diffusion of the
obstacle values after one, five, ten and fifty full iterations represented in blue.

Figure 15: Map iteration process after one, five, ten and fifty iterations

Similarly to the obstacle values, another factor that can be taken into account is the
familarity of an area. As humans prefer to take paths they already know, every hexagon
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the robot already passed can get a small increase in its familarity value which will be
subtracted from its cost. This value can then be transfered to the neighbor tiles just like
in the blurring of obstacles and the robot will thus prefer familiar paths and areas, just
like a human. As an outlook to the evaluation, figure shows the familiarity values
after a simple transport task represented in green.

Figure 16: Familiar area marked in green

Step 3. Path Planning

The blurred edges and familiar areas together with the free space can then be used for the
actual path planning, that works similar to the A* algorithm, but takes the calculated
costs of each tile into account. Figure shows a possible solution for a path around
the two obstacles from above if there are no familiar areas yet. The algorithm chose to
plan around the obstacles instead of through the middle of them, because the space in
between is too narrow to walk through comfortably.

Figure 17: Planned path around obstacles

A challenge in the path planning process is the dynamic nature of the environment,
because the map has to be updated constantly, possibly even during the path planning, as
an obstacle could be moved to block the calculated path. This can be quite problematic,
as it could lead to the robot never actually moving, because the best path is constantly
changing. The human way to deal with this problem is to start walking the initially
planned path and avoid obstacles locally, as humans do not have a global overview. Some
details about the local obstacle avoidance will be given below in the safety component
section, as this also avoids any collisions. In addition to solving the dynamic environment
problem this also helps to make the robot more predictable. If a human co-worker is used

20



3.2 Human-Like Navigation 3 CONCEPT

to the robot always moving in the same direction when executing a task, it would be
very confusing if the robot started moving in a different direction because of an obstacle
far away the human does not know about. This could lead to the human believing the
robot is faulty or executing the wrong task. Another aspect worth taking into account
are the areas, where the robot has to replan its path because of moving obstacles. If
there is an area where obstacles are constantly changing and the robot needs to replan
every time it enters this area it might be better to avoid it altogether, if possible.

Step 4. Smoothing

The smoothing of the planned path is the first step in converting the discrete path
result from the path planner into commands that can be executed by a real robot, which
moves in a continuous environment. Since another key aspect of human locomotion is
the walking of rounded curves, rather than sharp turns, as well as straight lines, rather
than zigzag, it would not be reasonable to simply connect the hexagons’ midpoints to
a continuous curve. On the planned path in figure there are still some zigzag parts,
caused by the usage of a grid, as well as a sharp turn at the corner of the blurred out edge
of the obstacle. There are two main kinds of zigzag patterns possible on a hexagon grid.
The first one happens due to the quirk of the hexagon map that it is not possible to go
straight up or straight down and the second possibility occurs, if there is a diagonal part
of the path that does not align with the natural angle of the hexagons. Those zigzag
parts can be smoothed by shifting the reference points for the continuous movement
plan. In the graphics below three possible segments of the result of the path planner
can be seen. In figure (a) the midpoints of the hexagons are marked and in figure
118|(b) their midpoints are marked. This shift results in the reference points being on the
edges of the hexagons. In the third image, once again the latter points’ midpoints are
marked and in the forth image the continuous curve that results from connecting these
new reference points is shown. This way of shifting the reference points removes the
zigzag pattern and converts it into a straight line.

Figure 18: Smoothing process via midpoints

What can also be seen in the images above is the smoothing of any sharp turn, because
there are also two kinds of turns, either switching from one diagonal to another diagonal
or switching from a horizontal line to a diagonal one or the other way around. Both
of these turns can be replaced by a round curve that is approximated with the new
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reference points. An advantage of this very simple smoothing approach is, that the curve
resulting from connection the reference points does not leave the hexagons. Therefore,
the smoothed path does not collide with any obstacles. With traditional smoothing
approaches, such as spline interpolatiorﬂ or Bézier curvele the path can be altered
quite heavily and there needs to be an assessment, whether the new path violates any
constraints, such as getting too close to obstacles or even colliding with any. What is
more, using such a method in a reasonable way could result in losing the advantages
from the hexagon grid, because the diagonal steps could be smoothed out.

Step 5. Path Execution

The state of the robot in the navigation process can be modeled with a state machine,
as is shown in figure [19] below.

—»| ARRIVED

no path
found L
BLOCKED - REP
new target/ path found
timeout Y
|i new target/ new target/ turned to target
MITLAL TURN too far off too far off direction

turned to start direction

Y
[ MawvI

FINAL TURN

reached target

Figure 19: State machine modelling the navigation process

The idle state is called ARRIVED, because whenever the robot has reached its destina-
tion it has to wait until a new target is set and the new path can be planned, hence the
REPLAN state. For the purpose of making the robot move forwards, the robot first has
to be turned in the direction the path starts in, which is done in the INITTAL TURN
state. Similarly the robot can be required to turn in a specific direction at its target,
thus the FINAL TURN state. The key state is the NAVIGATE state, as this is where
the robots velocity is calculated. This process will be explained in more detail below.

"https://en.wikipedia.org/wiki/Spline_interpolation
2https://en.wikipedia.org /wiki/Bezier_curve

22



3.2 Human-Like Navigation 3 CONCEPT

From all of these states it can be necessary to return to the REPLAN state if the robot
went too far off the planned path, if there is a new or moved obstacle near the robot or if
a new target is set before the old one has been reached. If a new path can be found after
this, the sequence will be repeated, however if no path can be found the BLOCKED
state is entered and after a timeout a new attempt will be made.

Since the result of the smoother in the previous step is still a discrete path, these
reference points are being used to calculate commands that can be executed by the
robot and result in a fluid motion in the continuous environment. Simply sending the
robot from one reference point to another would result in jerky motions, because the path
would be a series of line segments, and not a rounded curve. The approach to solving this
problem is based on the reactive path following algorithm described in the AI systems
of the video game Left 4 Deaﬂ The developers of this game utilize a navigation mesh
and calculate paths by connecting the transition points between different sectors, as can
be seen in the images below. Just like on a regular grid, this results in a rough path with
zigzag patterns and following this path would result in unrealistic walking behaviour.
In the game, this is avoided, by letting the Al walk towards a point further ahead on
the path, as is shown in figure (a). This look-ahead point is changed, when the Al is
getting within a certain distance of this point. The resulting walking trajectory looks a
lot more fluid, as can be seen in figure b). A disadvantage of this approach is, that
it can cause the Al to move too far away from the calculated path, possibly into areas
that were not part of the initial path, because they should be avoided.

(a) Walking direction of AI (b) Walking trajectory

Figure 20: Walking trajectory of Al in video game left4dea

A solution to this problem is to add a slight motion towards the initially planned path,
while still keeping the look-ahead. Since the reference points for the robot’s path have
already been smoothed in the last step, this approach is especially expediant, because
the zigzag has already been removed and following the reference points a little more
closely than the game Al does is desirable. A graphical representation of the calculation
of the robot’s velocity can be seen in figure 21| below. One component is the vector from

Bhttp://www.valvesoftware.com /publications/2009/ai_systems_of 14d_mike_booth.pdf
Y“http:/ /www.valvesoftware.com/publications/2009/ai_systems_of_14d_mike_booth.pdf
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the robot’s current position to the closest reference point of the path and the second
component is the vector towards the look-ahead reference point. Exactly how far ahead
the look-ahead should be depends on the hexagon size in compairison to the robot’s size
and is to be evaluated. If the hexagons are relatively small compared to the robot it
should be further ahead in order to actually be a look-ahead or the robot’s body might
cover the reference point already. On the other hand, if the hexagons are relatively large
in comparison to the robot the look-ahead should be less advanced, or the path would
be altered too significantly, because the robot would cut the path’s curves.

Figure 21: Velocity calculated from closest point and lookahead

The velocity ¥ can be calculated by normalizing the sum of the before mentioned compo-
nents and scaling it with the desired speed s the robot should move with. The ¢ stands
for the vector from the robot’s position to the closest points of the path and a for the
vector to the look-ahead point.

1

el + [lal|
In addition to the robot’s velocity, its orientation has to be set, as because of the omni-
wheels, those two components are completly independant. Obviously the human way to
move is forwards, so the robot should do this as well. However because of the physical
constraints of the real world, there should be a certain tolerance, since it is not possible
for the robot to be turned to an exact orientation. Moreover slight sideways motion is
actually helpful to make the robot appear more human like, because if the robot would
be oriented exactly forwards, it would constantly be turning to adjust to its velocity.

U = speed - -(C+a)

Step 6. Robot Localization

For the robot to be able to navigate it needs to know its position on the global map,
which, as mentioned before, is a non trivial problem. The first attempt to solve this
problem was done with an ultrasound based indoor navigation system called marvel-
rnindEL which consists of stationary and mobile beacons and a timer. Four stationairy
ultrasonic beacons were installed on the traverse at the labratory and the mobile beacon

https://marvelmind.com/
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was installed on the BMB. Its location is then calculated based on the propagation de-
lay of the ultrasonic signal and trilateration. While this system is marketed to provide
two centimeter precise location data of moving objects, including autonomous robots,
the actual results were not promising. When standing still the robot could be located,
but when moving the calculated position was jumping around up to one meter off the
actual location of the robot, which might have been due to the noisiness of the mecanum
wheels on the labratory’s floor. However these noises are unavoidable and a system that
is supposed to be applicable in different scenarios, including industrial ones, should not
rely on silence. Therefore localization with the marvelmind system was not feasible in
this context.

The second attempt at the localization problem was using a position calculation
method called dead reckoning [20]. Traditionally used in marine and air navigation,
it describes the process of localizing oneself by using a previous position, speed and
course and trigonometrically calculating the new position. Based on the robots velocity
v and the robots rotation r, the postion and orientation displacement can be calculated
as follows:

Av — At (cos(r) —sz’n(r)) .

sin(r)  cos(r)
Ar =At-r

The position obtained by this approach is subjected to accumulating errors, because
both course and speed cannot be measured accurately by the robot’s sensors. Tradi-
tionally this was counteracted by regularly adjusting the position at known points, such
as specific landmarks. While this would also be possible in this context, it would make
the localization dependant on the objects, that are used as landmarks, which would not
only limit the environmental dynamic the algorithm can cope with, it would also require
manually setting these landmarks.

A more elegant way to deal with this problem is to pair the dead reckoning system
with the AMCL algorithm explained in the previous chapter. The order in which these
two systems are applied is not arbitrary, as only the dead reckoning is smooth, while the
AMCIL is jerky. The position of the robot on the global map is calculated by applying
transformations to its lastly calculated position. The first transformation that should
be applied is the one resulting from the AMCL algorithm in order to prevent dead
reckoning errors. The dead reckoning is then applied as a second transformation to
obtain a smooth positioning. This combination then provides a mostly fluid positioning
system which readjusts by itself.

Step 7. Safety

The importance of collsion avoidance has already been mentioned and as delays in the
navigation algorithm are not readily completly avoidable the safety component should be
a seperate module. This module has two functionalities both of which require knowledge
of the closest obstacle. This information can be obtained by processing the data provided
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by the robot’s LRF. Firstly, all move commands are processed and depending on the
distance to the closest obstacle the speed is reduced up to the point of no movement if
an obstacle is in the safety critical zone. For the purpose of avoiding abrupt deceleration
of the robot, this is done by decreasing the robot’s speed proportional to the distance of
the closest obstacle in a predefined interval, like follows with d(c) being the distance to
the closest obstacle, r the distance to the closest obstacle from which the robot’s speed is
reduced and s being the distance to the closest obstacle from which the robot is stopped.

v , if d(c) >r
/175afe - 6 y lf d(C) < S
Sgi(rc) v , else

Secondly the position of these obstacles is send back to the navigation algorithm, so
that the map can be updated. This step is particularly important if there are no other
measures taken to update the map, such as cameras that detect new or moved obstacles.

As an example, if a human being comes within the first safety layer, the robot’s speed
will be reduced and a new path around the human will be calculated and executed. If
the human clears the way, this is also detected and the robot will continue moving with
its usual speed. If a human comes within the second safety layer, the robot will stop
altogether and wait for the human to move away.

3.3 BMB Navigation Framework

Different steps of the navigation process explained above are specific to the human-like
navigation algorithm, while others are more universal. A navigation algorithm can be
designed in many different ways, for example to aid HRC, to avoid certain areas or to
optimize path length or energy efficency. However, all of these different navigation styles
have some common basic functionality, such as robot localization and collision avoidance.
Quite possibly, there is no universally best navigation algorithm, but only algorithms
that suit a specific purpose. For example, a robot programmed as a museum’s guide
should keep a certain distance to obstacles, so that a human can follow comfortably,
while a robot working in logistics needs to move close to an obstacle in order to load.
Although there are already countless approaches to robot navigation [18, B}, 25} 21], it is
still a very open and actively researched topic [19, 22, [9]. As the BMB is also a research
robot, it is instrumental to be able to run a navigation algorithm on it, which can result
in substantial overhead of getting to know its specific controlling details. Therefore, a
framework that allows for easily interchangeable navigation algorithms to be runable on
the BMB would be valuable, both in a research context and also for general application.

The different layers of the navigation process, as stated in the Human-Like Navigation
Section are also represented in the architecture of the BMBNF, an overview of which
can be seen in the image below. There are two main parts, the ready-made ROS part
and the java part, which consists of interfaces, abstract classes and readily implemented
classes.
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Figure 22: BMBNF overview

The ROS part of the framework does not need to be altered, as it provides the basic
functionality needed for the navigation, such as the global localization of the robot and
a safety component.

The Java part of the BMBNF provides the general structure needed for a navigation
algorithm, such as the map, a map controller that keeps it up to date and the actual
navigation algorithm. More details are given in the following chapter.
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4 Implementation

In the context of this thesis, a framework has been developed to integrate self written
navigation algorithms easily on the BMB. This chapter describes the implementation of
the BMB navigation framework (BMBNF') and the realization of the ideas formed in the
concept chapter.

4.1 BMBNF

It was decided to implement the extendable part of the BMBNF in Java, because this
allows its usage without knowing any BMB specific controlling details. However, since
on the BMB the controlling commands are executed via ROS, there is also part of the
framework, which is written in C++4. The two parts are connected via rosbridge, which
provides a JSON API to ROS functionality, such as publishing on topics and subscribing
to topics.

4.1.1 ROS

As has been described in chapter [2.2.1] ROS programms consist of nodes and asyn-
chronous communication is implemented via a publish/subscribe structure and topics.
A graphical representation of said structure of the BMBNF is shown in figure

broadcast

broadcast

[mobility:base/
bwist

subscribe
BMBNF via
rosbridge

subscribe

imobility:base/
cmd vel safe

Figure 23: ROS nodes of the BMBNF
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Both the AMCL node and the Dead Reckoning node broadcast transform data. The
Dead Reckoning node is subscribed to the twist topic, which contains information about
the robot’s velocity, that is used to calculate the position. It publishes this position on
the odometry topic. While odometry usually means the calculation of a robot’s position
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based on information from rotary encoders and the circumference of its wheels, ROS
uses the term more generally. In this context, odometry simply means the estimation of
a robot’s position relative to an initial location, no matter where this information stems
from. More detail on the localization process is given in the localization section below.
The safety node is subscribed to the laser scan topic, as it needs this information to
calculate the position of new obstacles. This position is then published on the obstacle
topic which is subscribed by the Java part of the BMBNF. The laser scan information
is also needed to reduce the robot’s speed by piping the move commands from the Java
part of the BMBNF through the safety node. Therefore the safety node is subscribed
to the safe command topic and publishes on the command topic. Commands published
on this topic are then executed by the BMB. Detailed information about this process is
given in the safety section.

Localization

In ROS, transforms are a way to keep track of multiple coordinate frames and their
relationship towards each other. This information is stored in a so called transform tree.
The BMB has its own coordinate frame, called base_frame, with its center as the origin
and the global map has a coordinate frame, called map_frame. The odometry frame
transforms the base_frame to the map_frame in order to get the robot’s global position.
In figure [24] a comparison of localization via dead reckoning and localization via AMCL
in addition to dead reckoning can be seen.

Qdometry Localization

Diead
Reackoning

Jranclation

Jodom_frame ST /base_frame

AMCLMap Localization

Odometry Dead
Drift Reckoning

& sl ati Transla
Imap_frame e 20 lodom_frame el Ibase_frame

Estimated by AMCL

Figure 24: Robot localization via dead reckoning in compairison to AMC

The AMCL node transforms sensed laser data to the odometry frame and in doing
so estimates the transformation from the base_frame to the map_frame. However it

Yhttp://wiki.ros.org/amcl
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only broadcasts the transformation between the map_frame and the odometry frame to
account for the drift of the dead reckoning. If this step is ommitted, the errors of the
dead reckoning will accumulate, leading to an increasingly inaccurate position.

Safety

The main task of the safety component of the BMBNF is the avoidance of any collisions
and also to send newly detected obstacles to the map. As both of these tasks require
knowledge of the closest obstacle, the safety node is subscribed to the laser scan topic and
calculates the position and distance to the closest obstacle, which is shown in algorithm 1]
It would also be possible to consider all obstacles near by, however this is not necessary,
because the closest one would lead to a collision first.

Algorithm 1 Calculate position of and distance to closest obstacle

Require: laserscan
Ensure: P = position of closest obstacle, d = distance to closest obstacle
d <+ 10
for i = 0,...,scan.ranges.size() do
if scan.ranges[i] < d then
d « scan.ranges|i
obs_r < scan.angle_increment - i
end if
end for
if d < send_to_map_distance then
T 4 pos, + obs,
delta, < —sin(r) - d
delta, < cos(r) - d
P, + pos, + delta,
P, < posy + delta,
end if

Only obstacles, that are being detected closer than 10 m away from the robot need
consideration, because the robot is not moving fast enough for there to be any safety
concerns with obstacles further away than 10 m. Thus the minimal distance to any
obstacle is initialized with 10 m. Then all data from the laser scan (scan.ranges) is
iterated over and the closest detected obstacle’s data is being stored. The laser range
finder detects the distance to any obstacles and depending on the data’s position in
the ranges array, the angle in which the robot stands to the obstacle can be calculated
using the angle increment between each laser detection point. The distance from which
obstacles are being send to the map is customizable, as for many applications 10 m is
too rough and maybe only obstacles within a radius of 2 m to the robot need to be
considered. The position of the obstacle can be calculated with the data about its angle
and distance and using trigonometrical functions.

The velocity commands are published on the safe velocity command topic, which the
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safety node is subscribed to. This velocity is then scaled according to the distance
measured by the laser scanner and published on the actual velocity command topic.

4.1.2 Java

The Java part of the framework handels any communication to the ROS components,
so there is no need to become acquainted with them, in order to use the BMBNF. The
published obstacles are handeled by the MapController and the move commands are
handeled by the BMB class. The Map is implemented as an interface, so the MapCon-
troller can work with it, but any new environment needs to be configurated by letting the
software know, where the map can be found, so this part can be extended to integrate
a self written map for the navigation algorithm.

«Java Interface»
Map

+ getCostlint %, int y): double

+ setCostlint x, int y, double cost)
+ isObstaclelint x, int y): boolean «Java Class»
+ setObstaclelint x, int y, boolean v} BMB

+ toHexCoordinate(Point3d p): HexCoordinate
+ toMCoordinatelint x, int y): Point3d

+ getHexSizeM(): double

- RosBridge rb

-Wector3d velocity

- double torque

- Matrixdd odomRotation

- Matrixdd odomTranslation

- setRemotevelocity()

+ setVelocity(WVector3d v)

+ setTorguel(double turn)

«Abstract Java Class» + getPosition(): Point3d
MapController + getOrientation(): double

- onOdometry(Odometry odom)

- Map map
- RosBridge rb

- onObstacle(PointWrapped p)
- connect()

Figure 25: UML of BMBNF’s Java classes

The UML diagram in figure shows these classes in more detail. The Map interface
includes the methods needed for a path planning algorithm, meaning the managing of
costs and obstacles, as well as the conversion between hexagon coordinates and world
coordinates. The MapController class requires access to such a map, in order to handle
new obstacles, that are communicated via rosbridge. The BMB classes rosbridge has
two tasks. Firstly, the robot’s odometry is communicated via ROS and stored in the

31



4.1 BMBNF 4 IMPLEMENTATION

BMB class to be accessed by the getPosition and getOrientation methods. Secondly, it
publishes the move commands set by the setTorque and setVelocity methods.

Map

There are different ways to handle a hexagon map, including different ways to arrange the
hexagons and different coordinate systems. For more details refer to [I]. The method
used in this thesis, is to offset every other row, but it would be just as possible to
offset every other column instead. With this arrangment offset coordinates have been
used, because they match the standard cartesian coordinates used with square grids,
as can be seen below, in figure a). Therefore, this option is more intuitive than
cube coordinates or axial coordinates. As the odd rows are offset, the calculation of the
neighbour coordinates differs for even and odd rows, as can be seen in figure 26|(b).

(a) Offset coordinates (b) Neighbour coordinates

Figure 26: Offset coordinates on hexagon grid

Using the cartesian coordinates, the cost of each map tile could be stored in a two
dimensional array. For performance reasons, however, a one dimensional double array
should be used, as the coordinates can easily be converted as follows:

2D — 1D : 2/ = width -z +y

1D — 2D : x = 2/ div width,y = 2’ — 2'div width

BMB

The BMB class is responsible for the communication between the Java and the ROS
components of the framework. It holds the velocity and torque the real robot is supposed
to move with and sends these values as commands via rosbridge. This class also holds
data about the robot’s position, that is obtained by subscribing to the odometry topic.
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4.2 Human-Like Navigation

The following section describes how the BMBNF can be used to implement a human
like navigation algorithm, by realizing the ideas of the concept chapter.

Step 1. Map Controller

The flow procedure explained earlier can be implemented by continuously iterating over
the map and adjusting any values, that differ from the value a tile is supposed to have,
according to its neighbour’s values. On a large map, however, this is highly inefficient,
especially if there are only few obstacles or only a few familiar areas. A more efficient
approach is to store any changes to the map and only iterate over the immediate envi-
ronment of the changed tile, which can lead to more changes, that can also be stored
and reevaluated. This allows for parts of the map that have not been changed to simply
be skipped, which obviously saves time.

«=]Java Class»

«Abstract Java Class» FlowMapController

MapController

- FlowMap map

- Map map “ - Timer timer

- RosBridge rb - boolean(] changed

- onObstacle(PointWrapped p) - flow()

- connect() - setNeighboursChanged(int x, int y)

- getMeighbourScore(int , int y): double

Figure 27: UML MapController

The UML diagram [27] above shows the abstract MapController class from the BMBNF,
as well as the FlowMapController realizing this class for the human-like navigation algo-
rithm. Since the FlowMap offers additional functionality compared to the abstract Map
class, it is one of the attributes. A timer is needed, to continuously check for changes
of the map and these changes are stored in the changed array, so they can be evalu-
ated. This evaluation is done in the flow method, which uses the setNeighbourChanged
method to store its changes in the changed array and the getNeighbourScore method to
calculate the obstacle and familiarity values according to the neighbours’ values.

Step 2. Path Planning

Using the obstacle and familiarity values that have been calculated by the MapController,
the path planning procedure can be implemented as a standard A* algorithm. The cost
function ¢ includes the number of hexagons traveled so far, including the current one, an
added cost ¢ for every change of direction, as well as the obstacle values 0 and negative
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familiarity values f of the hexagon tiles that would have been covered by the robot, so
far.

g(n) = g(pre(n)) +1+c+o—f

The hexagons traveled so far is the standard value for the A* algorithm. The cost
for changing directions is added to minimize zigzag patterns in the planned path. The
obstacle values are added to ensure that there is sufficient space between any obstacles
and the planned path and the familiarity values are subtracted to make sure familiar
paths are preferred.

The heuristics function h ist simply the distance in hexagons to the desired target ¢.

h(n) =d(n,t)

Step 3. Smoothing

The implementation of the smoothing process via determining the midpoints in two iter-
ations is very straight forward. Firstly, the hexagon coordinates from the path planning
step have to be converted into two dimensional points on the continuous map. This is
done by calculating the midpoint of every hexagon like shown in algorithm

Algorithm 2 Calculate coordinates of hexagon midpoint

Require: x, y cartesian coordinates of hexagon
Ensure: P is midpoint of hexagon (x, y)
if y mod 2 =0 then
xShift «—x- HEX WIDTH
yShift<—y-HEX Y OFFSET
else
xShift «— HEX X MIDDLE +x- HEX WIDTH
yShift<—y-HEX Y OFFSET
end if
P, (HEX_X_MIDDLE + xzShift)/HEX_HEIGHT) - getHexSizeM ()
Py« (HEX_Y_MIDDLE + yShift)/HEX_HEIGHT) - getHexSizeM ()

The algorithm needs the values HEX_ WIDTH, HEX_Y_OFFSET, HEX X MIDDLE
and HEX_HEIGHT, whose meaning can be seen in figure They can all be calculated
from the initially defined hexagon size, as shown below. The calculation of the midpoint
of a hexagon obviously depends on, whether this hexagon is part of an even or an odd
row, but other than that, it is pretty straight forward.

HEX HEIGHT = HEX SIZFE

HEX WIDTH = \é?; -HEX HEIGHT

HEX_ X_MIDDLE = %HEX,HEIGHT
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HEXY MIDDLE = %HEX,WIDTH

HEX Y OFFSET = 3\8/§ -HEX _HEIGHT

~"]

Y_OFFSET HEIGHT

Y_MIDDLE

WIDTH

X_MIDDLE

~_

Figure 28: Hexagon constants

The resulting list of 2D points has to be iterated over twice. The midpoint M of two
adjacent points P and @ is calculated in a typical manner given the coordinates of two
points, which results in a smoothed over list of two dimensional points.

M — <Px;ro’Py‘;‘Qy>

Step 4. Path Execution

The BMB is controlled by two three dimensional vectors, the translational vector, called
linear, and the rotational vector, called angular. In linear, only the x and y coordinates
are needed, as the robot cannot fly and in angular, only the z coordinate for yaw rotation
is needed, as the BMB can perform neither a pitch nor a roll rotation. In algorithm
a scheme of the calculation of these vectors is illustrated.

This calculation needs to take place, as long as the robot has not reached its target,
which is checked with some tolerance in mind, because it is not possible to navigate the
BMB to a millimeter exact position. In every iteration, there is a check whether the path
needs to be recalculated, which would be the case, if an obstacle has been moved to block
the path ahead or the robot has moved too far off the calculated path. The algorithm
calculates the point on the path which is closest to the robot and the vector from the
robot to this point, as well as the look ahead point on the path and the vector to that
point. The actual velocity is then calculated from these two vectors like explained in
the concept chapter and if the deviation of the robot’s orientation to the direction of the
velocity exceeds a tolerance, the robot’s rotational componend is set according to this
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Algorithm 3 Calculate commands to execute path

Require: path
while — hasReachedTarget() do
if needs replanning then
replan();
end if
velocity < calcV elocity(closest Point, lookahead Point)
orientation <+ vectorsOrientation(velocity)
if absolute(orientation - robot.getOrientation()) > TOLERANCE_DEGREE then
robot.setTorque < getTorque(orientation)
end if
robot.setVelocity < transformV elocity(velocity, orientation)
end while

velocity’s direction. The velocity is then transformed to match the direction the robot
is currently facing and then the robot’s translational component is set, as well.

4.3 Use and Interplay

The navigation algorithm’s main thread is the Navigator class, an overview of which can
be seen in the UML diagramm in figure[29] Its run method implements the state machine
from figure [19]in the concept chapter, hence the state attribute. This method waits for
the setTarget method to be called, to provide a new target and orientation to move to.
This method can either be called via an RPC client or a web service. The commands
needed to reach this target are then calculated as explained in the steps above, which is
why the BMB, FlowMap, Smoother and AStar attributes are needed.

AStar
Navigator
+ findPath{HexCoordinate start, HexCoordinate end):
- State state LinkedList<HexCoordinate=
- Point3d target

- double orientation

- BMB robot

- FlowMap map

- Smoother smoother

- AStar aStar ._‘ Smoother

+ setTarget(Point3d target, double orientation)
+ runf)

+ smooth(LinkedList<HexCoordinate=> path):
LinkedList=Point3d=

Figure 29: UML Navigator

36



5 EVALUATION

5 Evaluation

Prior to letting the BMB navigate in a real scenario, some of the adjustable parameters
are being evaluated with a simulated robot.

5.1 Simulations

The parameters, which are being evaluated include the size of the hexagon grid, the flow
value that specifies how far the outer edges of obstacles are being blurred, as well as, the
lookahead value that determines the point on the planned path, that is used to calculate
the robot’s velocity. There is also a simulation, which shows the preference of familiar
areas.

5.1.1 Hexagon Grid Size

For the first simulation, the map of the P4PLab, which can be seen in figure is being
transformed to a hexagon grid of different sizes. On each of these maps, a path is being
planned from the same start to the same target position. The resulting paths on the
hexagon maps are shown in figure and the computation time of the path planning
procedure is shown in table

Figure 30: P4PLab

Figure shows that with increasing hexagon size, the position of obstacles becomes
less refined and on the last map, the obstacles are too distorted to allow the path to be
planned in the same way as before and a detour is planned instead, altough the actual
distance between the obstacles did not change. For this reason, the hexagon size is set
to 10 cm for the following scenarios, because this way obstacles are not too distoreted,
while the computation time is reasonable.

37



5.1 Simulations 5 EVALUATION

Hexagon size in cm Computation time in
Milliseconds

5 670

10 620

15 147

20 63

25 51

Table 2: Path planning time subject to hexagon size

(a) 0.05 m (b) 0.1 m (c) 0.15 m

(d) 0.2 m (e) 0.25 m

Figure 31: Evaluation of different hexagon sizes
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5.1.2 Flow Value Evaluation

In the second simulation set, the flow value is being evaluated in two fixed contexts,
meaning that the start and target position is the same respectively and all other ad-
justable parameters are fixed. The results of these simulations can be seen in figure
The red line represents the planned path and the green line represents the robot’s actual
trajectory. In order to analyse these simulations, the average distance from the robot to
the work bench has been calculated, while the robot was driving around it. The results
for each flow value are the following;:

FlowValue | Distance from planned path | Distance from robot to work-
to workbench in hexagons bench in cm

0.95 13 90

1.00 15 110

1.03 16 120

1.05 18 140

Table 3: Resulting distance with different flow values

Which one of these flow values is best suited in a specific context depends on the sce-
nario. Considering that the workbench is a static obstacle, which is part of the map and
therefore does not need to be detected by the robot, the flow value 1.03 has been chosen
to be used in the following scenarios. This decision was made to ensure the prevention
of any collisions with moving obstacles, that have to be detected and processed.
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(a) FlowValue 0.95 (b) FlowValue 0.95

(c) FlowValue 1.00 (d) FlowValue 1.00

(e) FlowValue 1.03 (f) FlowValue 1.03

(g) FlowValue 1.05 (h) FlowValue 1.05

Figure 32: Simulations with different flow values.
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5.1.3 Lookahead Evaluation

In the third simulation set, the same contexts are used, except for the flow value, which is
set to 1.03 and the lookahead of the navigation process is being adjusted. The results can
be seen in figure[33] One can observe, that the lower the lookahead value is set, the closer
the actual trajectory is to the planned path, which is exactly the expected outcome.
The simulations with the highest lookahead value seem to be the most human-like,
however there is quite a substantial deviation from the planned path. For this reason,
the lookahead 8 is chosen for the following scenarios, because the resulting trajectory
has the desired smoothness and roundedness of a human trajectory, whilst still being
close enough to the planned path, that with the flow value 1.03, the robot will not try
to navigate too close to an obstacle.
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(a) Lookahead 5 (b) Lookahead 5

(¢) Lookahead 8 (d) Lookahead 8

(e) Lookahead 11 (f) Lookahead 11

(g) Lookahead 14 (h) Lookahead 14

Figure 33: Simulations with different lookaheads values.
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5.1.4 Familiarity Value Evaluation

In the fourth simulation, the preference of familiar areas is being evaluated. For this
purpose, the simulated robot first navigates around a workbench to establish a familiar
area. Driving around the workbench on the left side would take roughly 6.8 m, while
driving around the right side takes 6 m. Therefore, the algorithm plans a path on the
right side of the workbench. The resulting familiar area can be seen in figure[34|a). After
this, an obstacle is added on the right side of the workbench, for example a chair that
has been moved there. The algorithm still plans around the right side, although this
path is roughly 8 m long and thus longer than the path around the left side. This helps
to predict the robot’s behavior, because if the robot has the task to get an object and
come back to its original position, it would be unexpected if the robot chose an entirely
different path after getting the object. The resulting path is shown in figure [34(b). How
much longer the familiar path has to be to cause the planning algorithm to plan around
the left side depends on how much weight the familiarity values are given in the path
planning process.

(a) Establishing of familiar area (b) Utilization of familiar area

Figure 34: Path planning based on familiarity values
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5.2 Application

For the following scenarios, a fixed set of parameters is being used. According to the
previous evaluations, the hexagon size is set to 10 cm, the flow value is set to 1.03 and
the lookahead is set to 8.

The purpose of the first scenario is to see how stable the navigation algorithm works
on the real robot. For this, the robot navigates between two fixed points ten times. The
taken trajectories can be seen in figure (b) with the corresponding picture of the real
robot in figure [35[(a). While the trajectories are not perfectly aligned, they are similar
enough, that a human bystander would not be able to tell a difference, which gives the
algorithm the desired stable appearance.

(a) BMB at target position (b) Trajectories taken by the BMB

Figure 35: Scenario 1

The second scenario evaluates, how a static obstacle, which is not part of the map, is
being avoided. For this purpose, a cardboard box is placed in front of the robot before
the new target is set. This setup can be seen in figure

Figure 36: Setup of scenario 2

As can be seen in figure the box is being detected and the path is being planned
around it, just as if the box was part of the initial map and the actual trajectory is
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smooth and rounded. As the box was detected prior to setting the new target, there was
no recalculation of the planned path.

7

Figure 37: Planned path and trajectory of scenario 2

In the third scenario, the box is placed in front of the robot at a distance of roughly 1m,
after the target has been set and the robot is already moving, to evaluate the dynamic
obstacles avoidance. This setup can be seen in figure [3§|(a).

|

(a) Box has been placed (b) Collision avoidance

Figure 38: Scenario 3

The resulting planned path and trajectory is shown in figure The robot first follows
the initially planned path. After the box is placed, it is detected and the robot stops
and recalculates its path, which is then followed. As can be seen in figure 3§|(b), the
robot keeps a sufficient distance to the obstacle. In this scenario, the minimum distance
between the robot and the box was roughly 50 cm at the point where the robot was
replanning its path, which is still safe, as the robot only moves with moderate speed.
When the box was placed closer to the robot, it stopped moving and could not reach
its target, which is the desired behavior to prevent any collisions. The robot would only
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continue moving, when the box was moved further away.

* . {

i +
. \
- o

Figure 39: Experiment with different lookaheads values.

5.3 Human-like characteristics

Lastly, the human-like navigation characteristics are being evaluated, based on the list
in the concept chapter

e Humans prefer to walk through familiar areas: This characteristic is met, as has
been evaluated in section

e The length of a path has only a secondary role, but it is still considered: Since
the path planning algorithm is based on an A* algorithm, the length of the path
is being considered, but the distance to obstacles and familiar areas are more
important.

e Wider areas are generally preferred over areas, that are too narrow to comfortably
walk through: The preference of wider areas is realized through the obstcale values
and the keeping of a certain distance to obstacles, as can be seen in the evaluation
scenarios above.

e Humans tend to keep some distance to obstacles, if possible: Both the simulations
and the actual applications show, that this characteristic is being fulfilled.

e When walking through a narrow segment, humans tend to walk right in the middle
of the obstacles: This characteristic is also being satisfied by the obstacle values.

e Paths taken by humans are rounded with smooth curves and there are generally
no sharp turns or zigzag: The navigation algorithm is conform to this point, be-
cause all paths are being smoothed after planning and they are executed in a way,
that leads to an overall smooth locomotion, as can be seen, for example, in the
application section [5.2]
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e Humans naturally walk forwards and neither sideways nor backwards: The path
execution technique makes sure this point is met, which can also be seen in the

application section
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6 Future Work

This chapter gives an outlook on possible future work building on top of this thesis.

One of the goals of the navigation algorithm introduced in this thesis was the avoidance
of any obstacles to prevent collisions, which was achieved by keeping a set distance to
obstacles at all times. Depending on the scenario, however, it may be necessary to
approach an obstacle. If the Baxter robot is supposed to take a load out of a shelf,
for instance, this cannot be done whilst standing half a meter away from said shelf.
Therefore it would be useful to include a mode which allows the approaching of specific
obstacles if this was specifies within the task, in order to ensure the distance only falls
below the safety limit in these contexts. Furthermore, it may be necessary to step away
from an obstacle backwards, for example when taking something out of a shelf, because
turning without stepping back first may cause a collision with said shelf. This is also not
included in the current version of the navigation algorithm, because the approaching of
obstacles is not supported yet. These two enhancements should go hand in hand.

There are two elements, which could be elaborated to further improve the human-
likeness of the proposed navigation algorithm. Firstly, as mentioned in the goals section,
this work did not include any research on the acceleration and deceleration process
in human walking, although it may be beneficial to include these details in the path
execution part of the navigation algorithm. Secondly, the target orientation of the robot
was not considered in the path finding algorithm and the robot is simply turned at the
target, if necessary. It would be more human-like to adjust the planned path, so that
the robot is facing the desired direction without the need to turn.

In furtherance of the applicability of the BMB with its new navigation algorithm, it
would be useful to connect it to the TEDURU server [15] mentioned in the concept
chapter. This way, the robot could not only be used in a self-contained context, but also
be included in any HRC scenario managed by TEDURU.

Lastly, the ideas formed in the concept chapter are not BMB specific. Therefore, they
could also be extended to many different robots, to make them more predictable and
more intuitive to work with, as well.

48



7 CONCLUSION

7 Conclusion

In this thesis, a navigation algorithm for human-like path planning has been developped,
that can easily be applied in practical scenarios, which is a key piece still missing in
human-robot collaboration. To achieve this, a hexagon grid is introduced, to solve the
distance issue of diagonal steps on a square grid. The actual path planning is done on
this hexagon map in consideration of some of the key aspects of human pathfinding,
such as keeping a distance to obstacles, which is done by diffusing their outer edges and
preferring familiar areas. To overcome the issues connected to planning on a grid, such
as zigzag patterns, the path is then smoothed out by an optimizer. This path is executed
with a focus on a point further ahead on the path to account for another key aspect of
human pathfinding, namely the roundedness of walking trajectories. All this is done
to make the robot’s movements more intuitive and easier to predict, in favor of better
human-robot collaboration. In order to achieve this, it is not necessary to imitate real
human trajectories to the millimeter exact, as there are individual differences between
people anyways and humans are generally used to being around very different people.
Thus, the work introduced in this thesis is a simple yet effective approach to the human-
like path finding problem. As has been evaluated, the algorithm is able to cope with
dynamic environments, which makes it applicable in real HRC scenarios.

In the course of the implementation of the human-like navigation algorithm, a soft-
ware framework has been developped, which enables the easy deployment of a self writ-
ten navigation algorithm on the BMB. This framework allowed to simply implement
the human-like navigation algorithm as a Java project, without dealing with BMB spe-
cific controlling details and it would be easy to develop different navigation algorithms,
building on top of this framework.
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8 APPENDIX

8 Appendix

In the following sections, an installation guide for deploying the human-like navigation
algorithm on a BMB is provided, along with a startup guide and a guide for calling the
algorithm via a web interface.

8.1 Installation guide

This guide explaines, how the navigation system can be deployed on a BMB.

1.

® N o o

Install a current version of ROS on the BMB. The algorithm was developped and
tested with ROS Indigo Igloﬂ

. Set up the catkin build system[™}

. Download the mobility_base packagd™}

Download the navigation stack[ﬂ The amcl package and the map_server package
will be used.

Provide the map_server with a map of the environment.
Download the odometry and the safety package from the C++ folder at https://github.com/JessicaLac
Invoke catkin_make to build the odometry and safety nodes.

Download the Java project from https://github.com/Jessical.ackas/HumanLikeNavigation.git.
All required dependencies and executions are specified in the pom.xml.

. Build the executable .jar file.

8.2 Startup guide

This guide explaines, how the navigation system can be started on the BMB.

1.
2.

3.
4.
D.
6.

Run the mobility_base_bringup to start the ROS master.

Run the odometry node. It is beneficial to provide a rough estimate of the initial
position.

Run the map_server with the previously generated map file.
Run the amcl node.
Run the safety node.

Run the previously build .jar file.

"http:/ /wiki.ros.org/indigo
Bhttp://wiki.ros.org/catkin
9http://wiki.ros.org/mobility_base
2Ohttp: //wiki.ros.org/navigation

93



8.3 Webservice guide 8 APPENDIX

8.3 Webservice guide

This guide explaines, how the navigation system can be called via a web service.

1. Download the Java project from https://github.com/JessicaLackas/HumanLikeNavigation.git.
All required dependencies and executions are specified in the pom.xml.

2. Start the SpringBoot application.
3. Open the bmbsettarget.html file in any browser.

4. Set the desired target.
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